Chapter 10: Circles
 Exercise 10.1 Page No: 64

1. $A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}, A B=30 \mathrm{~cm}$, the distance of $A B$ from the centre of the circle is :
(A) 17 cm
(B) 15 cm
(C) 4 cm
(D) 8 cm

Solution:

(D) 8 cm

Given: Diameter of the circle $=d=A D=34 \mathrm{~cm}$
\therefore Radius of the circle $=r=\mathrm{d} / 2=\mathrm{AO}=17 \mathrm{~cm}$
Length of chord $A B=30 \mathrm{~cm}$
Since the line drawn through the center of a circle to bisect a chord is perpendicular to the chord, therefore $A O P$ is a right angled triangle with L as the bisector of $A B$.
$\therefore A P=1 / 2(A B)=15 \mathrm{~cm}$
In right angled triangle AOB, by Pythagoras theorem, we have:
$(A O)^{2}=(O P)^{2}+(A P)^{2}$
$\Rightarrow(17)^{2}=(\mathrm{OP})^{2}+(15)^{2}$
$\Rightarrow(\mathrm{OP})^{2}=(17)^{2}-(15)^{2}$
$\Rightarrow(\mathrm{OP})^{2}=289-225$
$\Rightarrow(\mathrm{OP})^{2}=64$
$\Rightarrow(\mathrm{OP})=8$
\therefore The distance of $A B$ from the center of the circle is 8 cm .
2. In Fig. 10.3, if $O A=5 \mathrm{~cm}, A B=8 \mathrm{~cm}$ and $O D$ is perpendicular to $A B$, then $C D$ is equal to:
(A) 2 cm
(B) 3 cm
(C) 4 cm
(D) 5 cm

Solution:
(A) 2 cm

Given:
Radius of the circle $=r=A O=5 \mathrm{~cm}$
Length of chord $A B=8 \mathrm{~cm}$
Since the line drawn through the center of a circle to bisect a chord is perpendicular to the chord, therefore $A O C$ is a right angled triangle with C as the bisector of $A B$.
$\therefore A C=1 / 2(A B)=8 / 2=4 \mathrm{~cm}$
In right angled triangle AOC, by Pythagoras theorem, we have:
$(A O)^{2}=(O C)^{2}+(A C)^{2}$
$\Rightarrow(5)^{2}=(O C)^{2}+(4)^{2}$
$\Rightarrow(O C)^{2}=(5)^{2}-(4)^{2}$
$\Rightarrow(\mathrm{OC})^{2}=25-16$
$\Rightarrow(\mathrm{OC})^{2}=9$
$\Rightarrow(\mathrm{OC})=3$
\therefore The distance of AC from the center of the circle is 3 cm .
Now, $O D$ is the radius of the circle, $\therefore \mathrm{OD}=5 \mathrm{~cm}$
$C D=O D-O C$
$C D=5-3$
$C D=2$
Therefore, $\mathrm{CD}=2 \mathrm{~cm}$
3. If $A B=12 \mathrm{~cm}, B C=16 \mathrm{~cm}$ and $A B$ is perpendicular to $B C$, then the radius of the circle passing through the points A, B and C is :
(A) 6 cm
(B) 8 cm
(C) 10 cm
(D) 12 cm

Solution:

(C) 10 cm

According to the question,
$A B=12 \mathrm{~cm}, B C=16 \mathrm{~cm}, A B \perp B C$.
Therefore,
$A C$ is the diameter of the circle passing through the points A, B and C.
Now, according to the figure,
We get, $A B C$ is a right angled triangle.
By Pythagoras theorem:
$(A C)^{2}=(C B)^{2}+(A B)^{2}$
$\Rightarrow(A C)^{2}=(16)^{2}+(12)^{2}$
$\Rightarrow(A C)^{2}=256+144$
$\Rightarrow(A C)^{2}=400$
Hence, $(A C)=20$
Diameter of the circle $=20 \mathrm{~cm}$
Thus, radius of the circle $=$ Diameter $/ 2=20 / 2=10 \mathrm{~cm}$
Hence, Radius of the circle $=10 \mathrm{~cm}$
4. In Fig.10.4, if $\angle A B C=\mathbf{2 0} \mathbf{0}^{\circ}$, then $\angle A O C$ is equal to:
(A) $20{ }^{\circ}$
(B) 40°
(C) $60{ }^{\circ}$
(D) 10°

Fig. 10.4

Solution:

(B) 40°

According to the question, $\angle \mathrm{ABC}=20^{\circ}$
We know that, "The angle subtended by an arc at the center of a circle is twice the angle subtended by it at remaining part of the circle"
According to the theorem, we have,
$\angle A O C=2 \times \angle A B C$
$=2 \times 20^{\circ}$
$=40^{\circ}$
Therefore, $\angle A O C=40^{\circ}$
5. In Fig.10.5, if $A O B$ is a diameter of the circle and $A C=B C$, then $\angle C A B$ is equal to:
(A) 30°
(B) 60°
(C) 90°
(D) 45°

Fig. 10.5

Solution:

(D) 45°

According to the question, we have,
Diameter of the circle $=\mathrm{AOB}$
$A C=B C$
Since, angles opposite to equal sides are equal
$\angle A B C=\angle B A C$
Let, $\angle A B C=\angle B A C=x$
Also, diameter subtends a right angle to the circle, $\angle A C B=90^{\circ}$
We also know that, by angle sum property of a triangle, sum of all angles of a triangle $=180^{\circ}$.
$\angle C A B+\angle A B C+\angle A C B=180^{\circ}$
$\Rightarrow x+x+90^{\circ}=180^{\circ}$
$\Rightarrow 2 x=90^{\circ}$
$\Rightarrow \mathrm{x}=45^{\circ}$
$\angle C A B=\angle A B C=45^{\circ}$

Exercise 10.2 Page No: 64

Write True or False and justify your answer in each of the following:

1. Two chords $A B$ and $C D$ of a circle are each at distances 4 cm from the centre. Then $\mathrm{AB}=\mathrm{CD}$.

Solution:

True
Given that $A B$ and $A C$ are chords that are at a distance of 4 cm from center of a circle.

Since, chords that are equidistant from the center of a circle are equal in length, We have, $A B=C D$.
2. Two chords $A B$ and $A C$ of a circle with centre O are on the opposite sides of $O A$. Then $\angle O A B=\angle O A C$.

Solution:

False
Let $A B$ and $A C$ be the chord of the circle with center O on the opposite side of $O A$.

Consider the triangles AOC and AOB :
$A O=A O$ (Common side in both triangles)
$O B=O C$ (Both OB and OC are radius of circle)
But we can't show that either the third side of both triangles are equal or any angle is equal. Therefore $\triangle A O B$ is not congruent to $\triangle A O C$.
$\therefore \angle O A B \neq \angle O A C$.
3. Two congruent circles with centres O and O^{\prime} intersect at two points A and B. Then $\angle A O B=\angle A O ' B$.

Solution:

True
Equal chords of congruent circles subtend equal angles at the respective centre. Hence, the given statement is true.
4. Through three collinear points a circle can be drawn.

Solution:

False
A circle through two points cannot pass through a point which is collinear to these two points.
5. A circle of radius 3 cm can be drawn through two points A, B such that $A B=$ 6 cm .

Solution:

True
According to the question,
Radius of circle $=3 \mathrm{~cm}$
Diameter of circle $=2 \times r$
$=2 \times 3 \mathrm{~cm}$
$=6 \mathrm{~cm}$
Now, from the question we have,
$A B=6 \mathrm{~cm}$
So, the given statement is true because $A B$ will be the diameter

Exercise 10.3 Page No: 64

1. If arcs $A X B$ and CYD of a circle are congruent, find the ratio of $A B$ and $C D$.

Solution:

According to the question,
We have, $A X B \cong C Y D$.
We know that, if two arcs of a circle are congruent, then their corresponding arcs are also equal.
So, we have chord $A B=$ chord CD.
Hence, we get,
$A B / C D=1$
$A B / C D=1 / 1$
$A B: C D=1: 1$
2. If the perpendicular bisector of a chord $A B$ of a circle PXAQBY intersects the circle at P and Q, prove that arc PXA \angle Arc PYB.

Solution:

According to the question, we have,
$P Q$ is the perpendicular bisect of $A B$,
So, we get, AM = BM
In $\triangle \mathrm{APM}$ and $\triangle \mathrm{BPM}$, From eq.(1),
$A M=B M$
$\angle \mathrm{AMP}=\angle \mathrm{BMP}=90^{\circ}$
PM = PM [Common side]
Therefore, $\triangle A P M \cong \triangle B P M$ [By SAS congruence rule]
$A P=B P[C P C T]$
Hence, arc PXA $\cong \operatorname{Arc}$ PYB
Therefore, if two chords of a circle are equal, then their corresponding arcs are congruent.

3. A, B and C are three points on a circle. Prove that the perpendicular

 bisectors of $A B, B C$ and $C A$ are concurrent.
Solution:

According to the question,
Three non-collinear points A, B and C are on a circle.

To prove: Perpendicular bisectors of AB, BC and CA are concurrent.
Construction: Join AB, BC and CA.
Draw: ST, perpendicular bisector of $A B$,
PM, perpendicular bisector of BC
And, QR perpendicular bisector of CA
As point A, B and C are not collinear, ST, PM and QR are not parallel and will intersect.

Proof: O lies on ST , the \perp bisector of AB
$\mathrm{OA}=\mathrm{OB}$
Similarly, O lies on PM, the \perp bisector of BC
OB = OC
And, O lies on QR, the \perp bisector of CA
$O C=O A$
From (1), (2) and (3),
$O A=O B=O C$
Let $O A=O B=O C=r$
Draw circle, with centre O and radius r, passing through A, B and C .
Hence, O is the only point equidistance from A, B and C .
Therefore, the perpendicular bisectors of $A B, B C$ and $C A$ are concurrent.
4. $A B$ and $A C$ are two equal chords of a circle. Prove that the bisector of the angle BAC passes through the centre of the circle.

Solution:

According to the question,
We have, AB and AC are two chords which are equal with centre O .
$A M$ is the bisector of $\angle B A C$.
To prove: AM passes through O.
Construction: Join BC. Let AM intersect BC at P.
Proof: In DBAP and DCAP
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\angle B A P=\angle C A P$ [Given]
And $\mathrm{AP}=\mathrm{BP}$ [Common side]
$\triangle \mathrm{BAP} \cong \triangle C A P[B y ~ S A S]$
Hence, $\angle \mathrm{BPA}=\angle \mathrm{CPA}[\mathrm{CPCT}]$
We know that, $\mathrm{CP}=\mathrm{PB}$
But, since $\angle B P A$ and $\angle C P A$ are linear pair angles,
We have,
$\angle B P A+\angle C P A=180^{\circ}$
$\angle B P A=\angle C P A=90^{\circ}$
Then, AP is perpendicular bisector of the chord BC, which will pass through the centre O on being produced.
Therefore, AM passes through O.

5. If a line segment joining mid-points of two chords of a circle passes through

 the centre of the circle, prove that the two chords are parallel.
Solution:

Consider AB and CD to be the chords of the circle with center O.

Let L be the midpoint of $A B$.
Let M be the midpoint of $C D$.
Let PQ be the line passing through these midpoints and the center of the circle.
Then, PQ is the diameter of the circle.

We know that, line joining center to the midpoint of a chord is always perpendicular to the chord.
Since M is the midpoint of CD, we have,
$O M \perp C D$
$\Rightarrow \mathrm{OMD}=90^{\circ}$
Similarly, L is the midpoint of $A B$,
OL \perp AB
$\Rightarrow \mathrm{OLA}=90^{\circ}$
But, we know,
$\angle O L A$ and $\angle O M D$ are alternate angles.
So, AB || CD.
Hence, proved.

6. $A B C D$ is such a quadrilateral that A is the centre of the circle passing through B, C and D. Prove that $\angle C B D+\angle C D B=1 / 2 \angle B A D$

Solution:

According to the question, we have, a quadrilateral $A B C D$ such that A is the centre of the circle passing through B, C and D.

Construction: Join CA and BD.

We know that, in a circle, angle subtended by an arc at the center is twice the angle subtended by it at any other point in the remaining part of the circle
So, the arc DC subtends $\angle D A C$ at the center and $\angle C A B$ at point B in the remaining part of the circle,

We get, $\angle \mathrm{DAC}=2 \angle \mathrm{CBD}$
Similarly,
the arc $B C$ subtends $\angle C A B$ at the center and $\angle C D B$ at point D in the remaining part of the circle,

We get,
$\angle C A B=2 \angle C D B$
From equations (1) and (2),
We have:
$D A C+\angle C A B=2 \angle C D B+2 \angle C B D$
$\Rightarrow \angle B A D=2(\angle C D B+\angle C B D)$
$\Rightarrow(\angle \mathrm{CDB}+\angle \mathrm{CBD})=1 / 2(\angle \mathrm{BAD})$
7. O is the circumcentre of the triangle $A B C$ and D is the mid-point of the base $B C$. Prove that $\angle B O D=\angle A$.

Solution:

According to the question, we have, O is the circumcenter of the triangle $A B C$ and D is the midpoint of $B C$.

To prove: $\angle B O D=\angle A$
Construction: Join OB and OC.
In \triangle OBD and $\triangle C D$:
OD = OD (common)
$D B=D C$ (D is the midpoint of $B C$)
$O B=O C$ (radius of the circle)
By SSS congruence rule, $\triangle O B D \cong \triangle O C D$.
$\angle B O D=\angle C O D(B y$ CPCT)
Let $\angle \mathrm{BOD}=\angle \mathrm{COD}=\mathrm{x}$
We know that, angle subtended by an arc at the center of the circle is twice the angle subtended by it at any other point in the remaining part of the circle.

So, we have,
$2 \angle B A C=\angle B O C$
$\Rightarrow 2 \angle B A C=\angle B O D+\angle D O C$
$\Rightarrow 2 \angle B A C=x+x$
$\Rightarrow 2 \angle B A C=2 x$
$\Rightarrow \angle B A C=x$
$\Rightarrow \angle B A C=\angle B O D$
Hence, proved.
8. On a common hypotenuse $A B$, two right triangles $A C B$ and $A D B$ are situated on opposite sides. Prove that $\angle B A C=\angle B D C$.

Solution:

According to the question, we have, ACB and ADB are two right triangles.

To Prove: $\angle B A C=\angle B D C$
We know that, ACB and ADB are right angled triangles,
Then, $\angle \mathrm{C}+\angle \mathrm{D}=90^{\circ}+90^{\circ}$
$\angle C+\angle D=180^{\circ}$
Therefore ADBC is a cyclic quadrilateral as sum of opposite angles of a cyclic quadrilateral $=180^{\circ}$

We also have, $\angle B A C$ and $\angle B D C$ lie in the same segment $B C$ and angles in the same segment of a circle are equal.
$\therefore \angle B A C=\angle B D C$.
Hence Proved.
9. Two chords AB and AC of a circle subtends angles equal to 90° and 150°, respectively at the centre. Find $\angle B A C$, if $A B$ and $A C$ lie on the opposite sides of the centre.

Solution:

According to the question, we have,
In $\triangle \mathrm{AOB}$,
$O A=O B$ (radius of the circle)

Since angle opposite to equal sides are equal, we get, $\angle O B A=\angle O A B$
We know that, according to angle sum property, sum of all angles of a triangle = 180°

Using the angle sum property in $\triangle A O B$, we get,
$\angle O A B+\angle A O B+\angle O B A=180^{\circ}$
$\Rightarrow \angle O A B+90^{\circ}+\angle O A B=180^{\circ}$
$\Rightarrow 2 \angle O A B=180^{\circ}-90^{\circ}$
$\Rightarrow 2 \angle O A B=90^{\circ}$
$\Rightarrow \angle O A B=45^{\circ}$
Now, in $\triangle A O C, O A=O C$ (radius of the circle)
Since, angle opposite to equal sides are equal
$\therefore \angle O C A=\angle O A C$
Using the angle sum property in $\triangle A O B$, sum of all angles of the triangle is 180°, we have:
$\angle O A C+\angle A O C+\angle O C A=180^{\circ}$
$\Rightarrow \angle O A C+150^{\circ}+\angle O A C=180^{\circ}$
$\Rightarrow 2 \angle O A C=180^{\circ}-150^{\circ}$
$\Rightarrow 2 \angle O A C=30^{\circ}$
$\Rightarrow \angle O A C=15^{\circ}$
Now, $\angle B A C=\angle O A B+\angle O A C$
$=45^{\circ}+15^{\circ}$
$=60^{\circ}$
$\therefore \angle B A C=60^{\circ}$
10. If $B M$ and $C N$ are the perpendiculars drawn on the sides $A C$ and $A B$ of the triangle $A B C$, prove that the points B, C, M and N are concyclic.

Solution:

According to the question,
BM and CN are the perpendiculars drawn on the sides AC and AB of the triangle ABC.
So, we have, $\angle \mathrm{BMC}=\angle \mathrm{BNC}=90^{\circ}$
We know that, if a line segment joining two points subtends equal angles on the same side of the line containing the segment, then the four points are concyclic.

Considering the question, since $B C$ joins the two points, B and C, subtending equal angles, $\angle \mathrm{BMC}$ and $\angle \mathrm{BNC}$, at M and N on the same side BC containing the segment, then $\mathrm{B}, \mathrm{C}, \mathrm{M}$ and N are concyclic.

Hence, we get that, $\mathrm{B}, \mathrm{C}, \mathrm{M}$ and N are concyclic.

Exercise 10.4 Page No: 64

1. If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord.

Solution:

According to the question, AB and CD are two equal chords of a circle with centre O , intersect each other at M.

To prove:
(i) $\mathrm{MB}=\mathrm{MC}$ and
(ii) $\mathrm{AM}=\mathrm{MD}$

Proof: $A B$ is a chord and $O E \perp$ to $A B$ from the centre O,
Since, perpendicular from the centre to a chord bisect the chord we get,
$A E=1 / 2 A B$
Similarly, FD = $1 / 2 C D$
It is given that, $A B=C D$
$\Rightarrow 1 / 2 A B=1 / 2 C D$
So, AE = FD
Since equal chords are equidistance from the centre,
And $A B=C D$
So, OE = OF
Now, as proved, in right triangles MOE and MOF,
hyp. OE = hyp. OF [Common side]
$\mathrm{OM}=\mathrm{OM}$
$\triangle \mathrm{MOE} \cong \triangle \mathrm{MOF}$
$M E=M F$
Subtracting equations (2) from (1), we get
AE - ME = FD - MF
$\Rightarrow A M=M D$ [Proved part (ii)]
Again, $\mathrm{AB}=\mathrm{CD}$ [Given]
And $\mathrm{AM}=\mathrm{MD}$ [Proved]
$A B-A M=C D-M D$ [Equals subtracted from equal]
Hence, MB = MC [Proved part (i)]
2. If non-parallel sides of a trapezium are equal, prove that it is cyclic.

Solution:

According to the question, we have,
$A B C D$ is a trapezium in which $A D \| B C$ non-parallel sides $A B$ and $D C$ of the trapezium $A B C D$ are equal i.e., $A B=D C$.
To prove: Trapezium $A B C D$ is cyclic.
Construction: Draw AM and DN such that they are perpendicular on BC.
Proof: In right triangles AMB and DNC,
$\angle \mathrm{AMB}=\angle \mathrm{DNC}=90^{\circ}$
$\mathrm{AB}=\mathrm{DC}$ [Given]
Since perpendicular distance between two parallel lines are same,
AM = DN
$\triangle \mathrm{AMB} \cong \triangle \mathrm{DNC}$ [By RHS congruence rule]
$\angle B=\angle C$ [CPCT]
And $\angle 1=\angle 2$
$\angle B A D=\angle 1+90$
$=\angle 2+90$
$=\angle C D A$
Now, in quadrilateral $A B C D$
$\angle B+\angle C+\angle C D A+\angle B A D=360$
Or, $\angle \mathrm{B}+\angle \mathrm{B}+\angle \mathrm{CDA}+\angle \mathrm{CDA}=360$
or, $2(\angle B+\angle C D A)=360$
or, $\angle B+\angle C D A=180$
We know that, if any pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic. Hence, the trapezium ABCD is cyclic.

3. If P, Q and R are the mid-points of the sides $B C, C A$ and $A B$ of a triangle and

 $A D$ is the perpendicular from A on $B C$, prove that P, Q, R and D are concyclic.Solution: To prove: R, D, P and Q are concyclic.

Construction: Join RD, QD, PR and PQ. RP joins the mid-point of $A B$, i.e., R, and the mid-point of BC, i.e., P.
Using midpoint theorem, RP\|AC
Similarly, $\mathrm{PQ}|\mid \mathrm{AB}$.
So, we get, $A R P Q$ is a parallelogram.
So, $\angle R A Q=\angle R P Q$ [Opposite angles of a \|gm].
$A B D$ is a right angled triangle and $D R$ is a median,
$. R A=D R$ and $\angle 1=\angle 2$
Similarly $\angle 3=\angle 4$
Adding equations (2) and (3),

We get, $\angle 1+\angle 3=\angle 2+\angle 4$
$\Rightarrow \angle R D Q=\angle R A Q$
Since $\angle \mathrm{D}$ and $\angle \mathrm{P}$ are subtended by $R Q$ on the same side of it, we get the points R, D, P and Q concyclic. Hence, R, D, P and Q are concyclic.
4. $A B C D$ is a parallelogram. A circle through A, B is so drawn that it intersects $A D$ at P and $B C$ at Q. Prove that P, Q, C and D are concyclic.

Solution:

According to the question, $A B C D$ is a parallelogram.
A circle through A, B is so drawn that it intersects $A D$ at P and $B C$ at Q.
To prove: P, Q, C and D are concyclic.
Construction: Join PQ.

Extend side AP of the cyclic quadrilateral APQB to D.
External angle, $\angle 1=$ interior opposite angle, $\angle B$
Since, $B A|\mid C D$ and $B C$ cuts them
$\angle B+\angle C=180^{\circ}$
Since, Sum of interior angles on the same side of the transversal $=180^{\circ}$
Or $\angle 1+\angle C=180^{\circ}$
So, PDCQ is cyclic quadrilateral.
Hence, the points P, Q, C and D are concyclic.
5. Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side if intersect, they will intersect on the circumcircle of the triangle.

Solution:

According to the question, triangle $A B C$ and $/$ is perpendicular bisector of $B C$.

To prove: Angles bisector of $\angle \mathrm{A}$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle A B C$.

Proof: Let the angle bisector of $\angle A$ intersect circumcircle of $\triangle A B C$ at D.

Construction: Join BP and CP.
Since, angles in the same segment are equal
We have, $\angle B A P=\angle B C P$
We know that, $A P$ is bisector of $\angle A$.
Then, $\angle B A P=\angle B C P=1 / 2 \angle A$
Similarly, $\angle \mathrm{PAC}=\angle \mathrm{PBC}=1 / 2 \angle \mathrm{~A}$
From equations (1) and (2), We have
$\angle \mathrm{BCP}=\angle \mathrm{PBC}$
We know that, if the angles subtended by two Chords of a circle at the centre are equal, the chords are equal.

So, BP = CP
Here, P is on perpendicular bisector of BC .
Hence, angle bisector of $\angle A$ and perpendicular bisector of $B C$ intersect on the circumcircle of $\triangle A B C$.

