<u>Chapter 12: Heron's formula</u> <u>Exercise: 12.1(MCQ)</u>

Question 1. An isosceles right triangle has an area of 8 cm². The length of its hypotenuse is

(A) √32 cm (B) √16 cm (C) √48 cm

(D) √24 cm

Solution: (A) $\sqrt{32}$ cm

Let the height of triangle = hAs the triangle is isosceles, Let base = height = h

According to the question, Area of triangle = 8cm^2 $\Rightarrow \frac{1}{2} \times \text{Base} \times \text{Height} = 8$ $\Rightarrow \frac{1}{2} \times \text{h} \times \text{h} = 8$ $\Rightarrow h^2 = 16$ $\Rightarrow \text{h} = 4 \text{cm}$

Base = Height = 4cm

Since the triangle is right-angled, Hypotenuse² = Base² + Height² \Rightarrow Hypotenuse² = 4² + 4² \Rightarrow Hypotenuse² = 32 \Rightarrow Hypotenuse = $\sqrt{32}$

Question 2. The perimeter of an equilateral triangle is 60 m. The area is

(A) 10√3 m²
(B) 15√3 m²
(C) 20√3 m²
(D) 100√3 m²

Solution: (D) 100√3 m²

Area of an equilateral triangle of side a = $\sqrt{3}/4$ a²

According to the question, The perimeter of triangle = 60m $\Rightarrow a + a + a = 60$ $\Rightarrow 3a = 60$ $\Rightarrow a = 20m$ Area of the triangle = ($\sqrt{3}/4$) a^2 = ($\sqrt{3}/4$) (20)² = ($\sqrt{3}/4$) (400) = 100 $\sqrt{3}$

Question 3. The sides of a triangle are 56 cm, 60 cm and 52 cm long. Then the area of the triangle is

(A) 1322 cm²
(B) 1311 cm²
(C) 1344 cm²
(D) 1392 cm²

Solution: (C) 1344 cm²

According to the question, Sides of a triangle, a = 56, b = 60, c = 52 $s = \frac{a+b+c}{2}$ s = (56 + 60 + 52)/2 = 168/2 = 84.Area of triangle $=\sqrt{s(s - a)(s - b)(s - c)}$ $= \sqrt{84(84 - 56)(84 - 60)(84 - 52)}$ $= \sqrt{\sqrt{84 \times 28 \times 24 \times 32}}$ = 1344cm²

4. The area of an equilateral triangle with side $2\sqrt{3}$ cm is

(A) 5.196 cm²
(B) 0.866 cm²
(C) 3.496 cm²
(D) 1.732 cm²

Solution: (A) 5.196 cm²

Area of an equilateral triangle of side $a = \sqrt{3}/4 a^2$ According to the question, $a = 2\sqrt{3}$ Area of triangle = $(\sqrt{3}/4) a^2$ = $(\sqrt{3}/4) (2\sqrt{3})^2$ = $(\sqrt{3}/4)(12)$ = $3\sqrt{3}$ = 5.196

Exercise 12.2

Write True or False and justify your answer:

Question 1. The area of a triangle with a base of 4 cm aa and height of 6 cm is 24 cm².

Solution: False

Area of triangle = $\frac{1}{2} \times \text{Base} \times \text{Altitude}$ = $\frac{1}{2} \times 4 \times 6$ = 12cm^2

Hence, the statement "the area of a triangle with base 4 cm and height 6 cm is 24 cm²" is False.

2. The area of \triangle ABC is 8 cm² in which AB = AC = 4 cm and \angle A = 90°.

Solution: True

Area of triangle = $\frac{1}{2} \times Base \times Altitude$ = $\frac{1}{2} \times 4 \times 4$ = 8cm^2

Hence, the statement is "area of $\triangle ABC$ is 8 cm² in which AB = AC = 4 cm and $\angle A$ = 90°" is True.

3. The area of the isosceles triangle is 5/4 $\sqrt{11}cm^2$ if the perimeter is 11 cm and the base is 5 cm.

Solution: True

According to the question, Perimeter = 11cm and base, a = 5

As the triangle is isosceles, b = c Perimeter = 11 \Rightarrow a + b + c = 11 \Rightarrow 5 + b + b = 11 \Rightarrow 5 + 2b = 11 \Rightarrow 2b = 6 \Rightarrow b = 3 So, we have, a = 5, b = 3, c = 3 s = $\frac{a+b+c}{2}$ s = (5 + 3 + 3)/2 = 11/2 Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{\frac{11}{2}(\frac{11}{2}-5)(\frac{11}{2}-3)(\frac{11}{2}-3)}$ = $\sqrt{\frac{11}{2}(\frac{1}{2})(\frac{5}{2})(\frac{5}{2})}$

 \Rightarrow Area of triangle = (5 $\sqrt{11}$)/4cm²

Hence, the statement "The area of the isosceles triangle is 5/4 $\sqrt{11}$ cm² if the perimeter is 11 cm and the base is 5 cm" is True.

4. The area of the equilateral triangle is $20\sqrt{3}$ cm² whose each side is 8 cm.

Solution: False

Area of an equilateral triangle of side $a = \sqrt{3}/4 a^2$ According to the question, Area of a triangle = $20\sqrt{3} cm^2$ $\Rightarrow \sqrt{3}/4 a^2 = 20\sqrt{3}$ $\Rightarrow a^2 = 20 \times 4$ $\Rightarrow a^2 = 80$ $\Rightarrow a = 4\sqrt{5} cm$

Hence, the statement "the area of the equilateral triangle is $20\sqrt{3}$ cm² whose each side is 8 cm" is False.

Exercise 12.3

Question 1 Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of Rs 7 per m^2 .

Solution: According to the question,

The sides of the triangular field are 50 m, 65 m and 65 m. Cost of laying grass in a triangular field = Rs 7 per m² Let a = 50, b = 65, c = 65 s = (a + b + c)/2 $\Rightarrow s = (50 + 65 + 65)/2$ = 180/2= 90. Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{90(90-50)(90-65)(90-65)}$ = $\sqrt{90 \times 40 \times 25 \times 25}$ = 1500m²

Cost of laying grass = Area of triangle ×Cost per m² = 1500×7 = Rs.10500

2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 13 m, 14 m and 15 m. The advertisements yield an earning of Rs 2000 per m² a year. A company hired one of its walls for 6 months. How much rent did it pay?

Solution: According to the question,

The sides of the triangle are 13 m, 14 m and 15 m Let a = 13, b = 14, c = 15s = (a + b + c)/2 $\Rightarrow s = (13 + 14 + 15)/2 = 42/2 = 21.$

```
Area of triangle = \sqrt{s(s-a)(s-b)(s-c)}
= \sqrt{21(21-13)(21-14)(21-15)}
= 84m<sup>2</sup>
```

Cost of advertisements for a year = Area of triangle × Cost per m^2 = 84×2000 = Rs. 168000

Since the board is rented for only 6 months: Cost of advertisements for 6 months = $(6/12) \times 168000 = \text{Rs.} 84000$

Question 3 From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of the perpendiculars are 14 cm, 10 cm and 6 cm. Find the area of the triangle.

Solution: According to the question,

The lengths of the perpendiculars are 14 cm, 10 cm and 6 cm. We know that, Area of an equilateral triangle of side $a = \sqrt{3}/4 a^2$

We divide the triangle into three triangles,

Area of triangle = $(1/2 \times a \times 14) + (1/2 \times a \times 10) + (1/2 \times a \times 6)$ $\sqrt{3}/4 a^2 = \frac{1}{2} \times a \times (14 + 10 + 6)$ $\sqrt{3}/4 a^2 = \frac{1}{2} \times a \times 30$ $a = 60/\sqrt{3} = 20\sqrt{3}$

Area of the triangle = $\sqrt{3}/4 a^2 = \sqrt{3}/4 (20\sqrt{3})^2 = 300\sqrt{3} cm^2$

Question 4 The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3: 2. Find the area of the triangle.

Solution: According to the question,

The perimeter of the isosceles triangle = 32 cm

```
It is also given that, the ratio of equal side to base = 3: 2

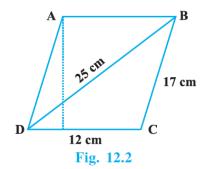
Let the equal side = 3x

So, base = 2x

The perimeter of the triangle = 32

\Rightarrow 3x + 3x + 2x = 32

\Rightarrow 8x = 32


\Rightarrow x = 4.
```

Equal side = $3x = 3 \times 4 = 12$ Base = $2x = 2 \times 4 = 8$ The sides of the triangle = 12cm, 12cm and 8cm. Let a = 12, b = 12, c = 8 s = (a + b + c)/2 \Rightarrow s = (12 + 12 + 8)/2

= 32/2 = 16.

Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{16(16-12)(16-12)(16-8)}$ = $32\sqrt{2}$ cm²

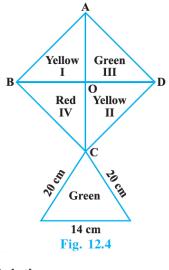
Question 5 Find the area of a parallelogram given in Fig. 12.2. Also, find the length of the altitude from vertex A on the side DC.

Solution:

We know that, Area of parallelogram(ABCD) = Area(Δ BCD) + Area(Δ ABD)

For Area (Δ BCD), We have, a = 12, b = 17, c = 25 s = (a + b + c)/2 \Rightarrow s = (12 + 17 + 25)/2 = 54/2 = 27.

Area of (Δ BCD) = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{27(27-12)(27-17)(27-25)}$


= 90 cm²

Since, ABCD is a parallelogram, Area(Δ BCD) = Area(Δ ABD) Area of parallelogram(ABCD) = Area(Δ BCD) + Area(Δ ABD) = 90 + 90 = 180 cm²

Let altitude from A be = x Also, Area of parallelogram(ABCD) = CD × (Altitude from A) \Rightarrow 180 = 12 × x \Rightarrow x = 15 cm

Exercise 12.4

Question 1. How much paper of each shade is needed to make a kite given in Fig. 12.4, in which ABCD is a square with a diagonal of 44 cm.

Solution:

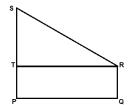
According to the figure, AC = BD = 44cmAO = 44/2 = 22cmBO = 44/2 = 22cmFrom $\triangle AOB$, $AB^2 = AO^2 + BO^2$ $\Rightarrow AB^2 = 22^2 + 22^2$ $\Rightarrow AB^2 = 2 \times 22^2$ $\Rightarrow AB = 22\sqrt{2} cm$ Area of square = (Side)² $= (22\sqrt{2})^2$ = 968 cm² Area of each triangle (I, II, III, IV) = Area of square /4 = 968 / 4= 242 cm² To find the area of the lower triangle, Let a = 28, b = 28, c = 14s = (a + b + c)/2 \Rightarrow s = (28 + 28 + 14)/2 = 70/2 = 35. Area of the triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{35(35-28)(35-28)(35-14)}$ = 49√15 = 189.77cm² Therefore, we get, Area of Red = Area of IV = 242 cm² Area of Yellow = Area of I + Area of II = 242 + 242 = 484 cm² Area of Green = Area of III + Area of the lower triangle = 242 + 189.77 = 431.77 cm²

Question 2. The perimeter of a triangle is 50 cm. One side of a triangle is 4 cm longer than the smaller side and the third side is 6 cm less than twice the smaller side. Find the area of the triangle.

Solution: Let the smaller side be = x cm Then, larger side = (x + 4) cm And, third side = (2x-6) cm

Given that, Perimeter = 50 cm \Rightarrow x + (x + 4) + (2x-6) = 50 \Rightarrow 4x-2 = 50 \Rightarrow 4x = 52 \Rightarrow x = 13

Therefore, smaller side = 13cm Larger side = x + 4 = 13 + 4 = 17cm Third side = $2x-6 = 2\times13 - 6 = 26-6 = 20$ cm


To find the area of a triangle, Let a = 13, b = 17, c = 20s = (a + b + c)/2 $\Rightarrow s = (13 + 17 + 20)/2 = 50/2 = 25$.

Area of triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{25(25-13)(25-17)(25-20)}$

= 20√30 cm²

Question 3. The area of a trapezium is 475 cm² and the height is 19 cm. Find the lengths of its two parallel sides if one side is 4 cm greater than the other.

Solution:

Let the given trapezium be PQRS, given in the figure. According to the question, PQ = 19cmLet RQ = x cm

Then, PS = (x + 4)cm

Construction: Draw a perpendicular from R on PS which will also be parallel to PQ.

Now, we get,

PQRT is a rectangle, Area of rectangle PQRT = PQ × QR \Rightarrow Area(PQRT) = 19×x = 19x

Now, PS = PT + TSSince PT = QR = x cm(x + 4) = x + TS $\Rightarrow TS = 4\text{ cm}$

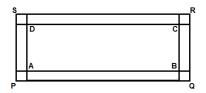
```
Area of triangle RST = \frac{1}{2} \times RT \times ST
Since RT = PQ = 19cm
\Rightarrow Area(\DeltaRST) = \frac{1}{2} \times 19 \times 4 = 38cm<sup>2</sup>
```

```
Area(PQRS) = Area(PQRT) + Area(\DeltaRST)

\Rightarrow 475 = 19x + 38

\Rightarrow 19x = 475 - 38

\Rightarrow 19x = 437


\Rightarrow x = 23 cm
```

(x + 4) = 23 + 4 = 27cm

Therefore, the lengths of the parallel sides are 23cm and 27cm.

Question 4. A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of the other sides. Find the largest area where the house can be constructed.

Solution:

Let the given rectangle be rectangle PQRS,

According to the question, PQ = 40m and QR = 15m

As 3m is left in both front and back, AB = PQ - 3 $\Rightarrow AB = 40 - 6$ $\Rightarrow AB = 34m$

Also, Given that 2m has to be left on both sides,

BC = QR - 2 $\Rightarrow BC = 15 - 4$ $\Rightarrow BC = 11m$

Now, Area left for house construction is an area of ABCD.

Hence, Area(ABCD) = AB \times CD = 34 \times 11 = 374 m²