Chapter 9: Some applications to Trigonometry

2016

Very Short Answer Type Questions [1 Mark]

Question 1.

If Figure, $A B$ is a 6 m high pole and $C D$ is a ladder inclined at an angle of 60° to the horizontal and reaches up to a point D of the pole. If $A D=2.54 \mathrm{~m}$, find the length of the ladder. (use $\sqrt{ } 3=1.73$)

Solution:

$$
\begin{aligned}
\mathrm{BD} & =\mathrm{AB}-\mathrm{AD} \\
& =6 \mathrm{~m}-2.54 \mathrm{~m}=3.46 \mathrm{~m}
\end{aligned}
$$

$$
\text { In } \triangle \mathrm{DBC}, \quad \frac{\mathrm{BD}}{\mathrm{CD}}=\sin 60^{\circ}
$$

$$
\Rightarrow \quad \frac{3.46}{\mathrm{CD}}=\frac{\sqrt{3}}{2}
$$

$$
\Rightarrow \quad \mathrm{CD}=\frac{2 \times 3.46}{\sqrt{3}}=\frac{2 \times 3.46}{1.73}=2 \times 2=4 \mathrm{~m}
$$

Hence, length of the ladder is 4 m .

Question 2.

A ladder, leaning against a wall, makes an angle of 60° with the horizontal. If the foot of the ladder is 2.5 m away from the wall, find the length of the ladder.

Solution:

Let AC be the ladder of length x.

Thus, length of the ladder is 5 m .

Question 3.

An observer, 1.7 m tall, is $20 \sqrt{ } 3 \mathrm{~m}$ away from a tower. The angle of elevation from the eye of the observer to the top of the tower is 30°. Find the height of the tower.

$$
\begin{aligned}
& \text { In } \triangle \mathrm{ABC} \text {, } \\
& \frac{\mathrm{BC}}{x}=\cos 60^{\circ} \\
& \Rightarrow \quad \frac{2.5}{x}=\frac{1}{2} \\
& \Rightarrow \quad x=2 \times 2.5=5 \mathrm{~m}
\end{aligned}
$$

Solution:

Let CD be the tower of height h.
In $\triangle \mathrm{DEA}$,

$$
\frac{\mathrm{DE}}{\mathrm{AE}}=\tan 30^{\circ}
$$

\Rightarrow
$\frac{h-1.7}{20 \sqrt{3}}=\frac{1}{\sqrt{3}}$
\Rightarrow
\Rightarrow

Short Answer Type Questions II [3 Marks]

Question 4.

The angles of depression of the top and bottom of a 50 m high building from the top of a tower are 45° and 60° respectively. Find the height of the tower and the horizontal distance between the tower and the building,

Solution:

Let CD is the building of height 50 m and AB be the tower.
Let horizontal distance between the tower and building is BC is x metre.
$\because \quad \mathrm{BCDE}$ is a rectangle
So, $\mathrm{ED}=\mathrm{BC}$ and $\mathrm{BE}=\mathrm{CD}$
Also, $\mathrm{ED}=x$ and $\mathrm{BE}=50 \mathrm{~m}$
Let $\mathrm{AE}=y$
Now, in $\triangle \mathrm{AED}, \quad \frac{y}{x}=\tan 45^{\circ} \Rightarrow \frac{y}{x}=1$

$$
\begin{equation*}
\Rightarrow \quad y=x \tag{i}
\end{equation*}
$$

Now, in $\triangle \mathrm{ABC}, \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ}$

$$
\Rightarrow \quad \frac{\mathrm{AE}+\mathrm{EB}}{\mathrm{BC}}=\sqrt{3} \Rightarrow \frac{y+50}{x}=\sqrt{3}
$$

$$
\Rightarrow \quad x+50=\sqrt{3} x \quad[\because y=x, \operatorname{using}(i)]
$$

$$
\Rightarrow \quad \sqrt{3} x-x=50
$$

$$
\Rightarrow \quad(\sqrt{3}-1) x=50
$$

$$
\Rightarrow \quad x=\frac{50}{\sqrt{3}-1}
$$

$\Rightarrow \quad x=\frac{50(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{50(\sqrt{3}+1)}{3-1}=\frac{50(\sqrt{3}+1)}{2}$
$\begin{array}{rlrl}\Rightarrow & x & =25(\sqrt{3}+1)=25(1.73+1)=25 \times 2.73=68.25 \mathrm{~m} \\ \therefore & & \text { Height of the tower } & =50+y=50+68.25 \\ & =118.25 \mathrm{~m} & (\because x=y)\end{array}$
Horizontal distance between the tower and the building $=x=68.25 \mathrm{~m}$.

Question 5.

A man standing on the deck of a ship, which is 10 m above water level, observes the
angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Find the distance of the hill from the ship and the height of the hill.
Solution:
Let AB be the water level, DA be the height of ship $=10 \mathrm{~m}$.
Let BC be the hill of height h from water level.
Let $\mathrm{AB}=x$
In $\triangle \mathrm{DEB}$,

$$
\frac{\mathrm{BE}}{\mathrm{DE}}=\tan 30^{\circ} \Rightarrow \frac{10}{x}=\frac{1}{\sqrt{3}}
$$

\Rightarrow
Now, in \triangle CED,

$$
\begin{equation*}
x=10 \sqrt{3} \mathrm{~m} \tag{i}
\end{equation*}
$$

\Rightarrow

$$
\frac{C E}{x}=\tan 60^{\circ}
$$

$$
\frac{h-10}{10 \sqrt{3}}=\sqrt{3}
$$

$\Rightarrow \quad h-10=30$
[From (i)]

\Rightarrow

$$
h=40 \mathrm{~m}
$$

So, distance of hill from ship $=10 \sqrt{3} \mathrm{~m}$ and the height of the hill $=40 \mathrm{~m}$.

Question 6.

Two men on either side of a 75 m high building and the thewthe ith base of the building observe the angles of elevation of the top of the building as 30° and 60°.
Find the distance between the two men

Solution:

Let C and D be the positions of two men.
Let $\mathrm{CB}=y$ and $\mathrm{BD}=x$

$$
\begin{array}{llrl}
\text { In } \triangle \mathrm{ABC}, & \frac{\mathrm{AB}}{\mathrm{BC}} & =\tan 60^{\circ} \\
\Rightarrow & \frac{75}{y} & =\sqrt{3} \\
\Rightarrow & y & =\frac{75}{\sqrt{3}}=\frac{75 \sqrt{3}}{3}=15 \sqrt{3} \mathrm{~m} \\
& & & =15 \times 1.73=25.95 \mathrm{~m}
\end{array}
$$

Now, in $\triangle \mathrm{ABD}, \quad \tan 30^{\circ}=\frac{75}{x} \Rightarrow \frac{1}{\sqrt{3}}=\frac{75}{x} \Rightarrow x=75 \sqrt{3} \Rightarrow 75 \times 1.73=129.75 \mathrm{~m}$
Hence, distance between two men is $x+y=129.75+25.95=155.7 \mathrm{~m}$

Question 7.

A 7 m long flagstaff is fixed on the top of a tower standing on the horizontal plane. From a point on the ground, the angles of elevation of the top and bottom of the flagstaff are 60° and 45° respectively. Find the height of the tower correct to one place of decimal

Let AB is the tower of height h and DA is the flagstaff of height 7 m and BC is x. In $\triangle A B C$,

$$
\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 45^{\circ}
$$

$$
\Rightarrow \quad \frac{h}{x}=1 \Rightarrow h=x
$$

Now, in $\triangle \mathrm{DBC}$,

$$
\frac{\mathrm{DB}}{\mathrm{BC}}=\tan 60^{\circ} \Rightarrow \frac{h+7}{x}=\sqrt{3}
$$

$$
\begin{aligned}
\Rightarrow & h+7 & =\sqrt{3} h & {[\because h=x, \text { using }(i)] } \\
\Rightarrow & (\sqrt{3}-1) h & =7 &
\end{aligned}
$$

Solution:

\Rightarrow

$$
\begin{aligned}
h & =\frac{7}{\sqrt{3}-1}=\frac{7(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} \\
& =\frac{7 \times(1.73+1)}{2}=9.5 \mathrm{~m}
\end{aligned}
$$

So, height of the tower is 9.5 m .

Question 8.

An aeroplane, when flying at a height of 4000 m from the ground passes vertically above another aeroplane at an instant when the angles of elevation of the two planes from the same point on the ground are 60° and 45° respectively. Find the vertical distance between the aeroplanes at that instant

Solution:

Let y is the vertical distance between the aeroplanes.
In $\triangle \mathrm{ABC}$,
\Rightarrow

$$
\begin{align*}
\frac{\mathrm{AB}}{\mathrm{BC}} & =\tan 45^{\circ} \Rightarrow \frac{4000}{x}=1 \\
x & =4000 \mathrm{~m} \tag{i}
\end{align*}
$$

Now, in $\triangle \mathrm{DBC}$,

$$
\frac{\mathrm{DB}}{\mathrm{BC}}=\tan 60^{\circ}
$$

$\Rightarrow \quad$. $y+4000=4000 \sqrt{3} \Rightarrow y=4000(\sqrt{3}-1)$

$$
y=4000(1.73-1)
$$

$$
\Rightarrow \quad \frac{y+4000}{x}=\sqrt{3}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{y+4000}{4000}=\sqrt{3} \tag{i}
\end{equation*}
$$

$$
\Rightarrow \quad y=4000 \times 0.73 \Rightarrow y=2920 \mathrm{~m}
$$

So, distance between the aeroplanes is 2920 m .

Long Answer Type Questions [4 Marks]

Question 9.

A bird is sitting on the top of an 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such a way that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Find the speed of flying of the bird.

Solution:

Let BC is 80 m high tree.
After 2 seconds, position of bird is E .
Let
$\mathrm{CE}=x$
In $\triangle \mathrm{CBA}$,
$\frac{\mathrm{BC}}{\mathrm{AB}}=\tan 45^{\circ}$
$\Rightarrow \quad \frac{80}{\mathrm{AB}}=1$
$\Rightarrow \quad \mathrm{AB}=80 \mathrm{~m}$
In \triangle EDA, $\frac{\mathrm{ED}}{\mathrm{AD}}=\tan 30^{\circ}$
$\Rightarrow \quad \frac{80}{\mathrm{AB}+\mathrm{BD}}=\frac{1}{\sqrt{3}}$
$\Rightarrow \quad \frac{80}{80+x}=\frac{1}{\sqrt{3}} \Rightarrow 80 \sqrt{3}=80+x \quad[\because \mathrm{AB}=80 \mathrm{~m}]$
$\Rightarrow \quad x=80 \sqrt{3}-80 \Rightarrow x=80(\sqrt{3}-1)$
$\Rightarrow \quad x=80(1.732-1) \Rightarrow x=80 \times 0.732$
$\Rightarrow \quad x=58.56 \mathrm{~m}$
$\Rightarrow \quad \mathrm{BD}=x=58.56 \mathrm{~m}$
So, the speed of flying of the bird $=\frac{\text { distance }(\mathrm{BD})}{\text { Time }}$

$$
=\frac{58.56}{2}=29.28 \mathrm{~m} / \mathrm{s}
$$

Question 10.

The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are 60° and 30° respectively. Find the height of the tower.

Solution:

Question 11.

The angle of elevation of the top Q of a vertical tower $P Q$ from a point X on the ground is 60°. From a point $\mathrm{Y}, 40 \mathrm{~m}$ vertically above X , the angle of elevation of the top Q of the tower is 45°. Find the height of the tower PQ and the distance PX.

Solution:

Let AB be the tower of height ' h '.

| In $\triangle \mathrm{ABC}$, | $\frac{\mathrm{AB}}{\mathrm{BC}}$ | $=\tan 60^{\circ}$ |
| ---: | :--- | ---: | :--- |
| \Rightarrow | $\frac{h}{4}$ | $=\sqrt{3}$ |
| \Rightarrow | h | $=4 \sqrt{3}$ |

Let height of PQ be h.
Let z be the distance between X and P.
$\because \quad$ XPRY is a rectangle.
$\therefore \quad \mathrm{RP}=\mathrm{XY}=40 \mathrm{~m}$ and $\mathrm{PX}=\mathrm{YR}=z$
In $\triangle \mathrm{QPX}, \quad \frac{\mathrm{PQ}}{\mathrm{PX}}=\tan 60^{\circ} \Rightarrow \frac{h}{z}=\sqrt{3}$
$\Rightarrow \quad \frac{h}{\sqrt{3}}=z$
In $\triangle \mathrm{QRY}, \quad \frac{\mathrm{QR}}{\mathrm{YR}}=\tan 45^{\circ}$
$\Rightarrow \quad \frac{h-40}{z}=1 \Rightarrow h-40=z$
From (i) and (ii), we get

$$
\begin{align*}
& & \frac{h}{\sqrt{3}} & =h-40 \Rightarrow h=h \sqrt{3}-40 \sqrt{3} \Rightarrow h \sqrt{3}-h=40 \sqrt{3} \\
\Rightarrow & & h(\sqrt{3}-1) & =40 \sqrt{3} \\
\Rightarrow & & h & =\frac{40 \sqrt{3}}{(\sqrt{3}-1)}=\frac{40 \sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{40(3+\sqrt{3})}{2} \\
\Rightarrow & & h & =20(3+1.73)=20 \times 4.73=94.6 \mathrm{~m} \tag{iii}
\end{align*}
$$

So, height of the tower $\mathrm{PQ}=94.6 \mathrm{~m}$
and the distance PX $=94.6-40=54.6 \mathrm{~m} \quad$ [From (ii) and (iii)]

Question 12.

As observed from the top of a lighthouse, 100 m high above sea level, the angles of depression of a ship, sailing directly towards it, changes from 30° to 60°. Find the distance travelled by ship during the period of observation.

Solution:

Let AB be the tower of height 100 m .
Let $\mathrm{BC}=y$ and $\mathrm{CD}=x$.
In $\triangle A B C, \quad \frac{A B}{B C}=\tan 60^{\circ}$
$\Rightarrow \quad \frac{100}{y}=\sqrt{3} \Rightarrow y=\frac{100}{\sqrt{3}}$
In $\triangle \mathrm{ABD}, \quad \frac{\mathrm{AB}}{\mathrm{BD}}=\tan 30^{\circ} \Rightarrow \frac{100}{y+x}=\frac{1}{\sqrt{3}}$
$\Rightarrow \quad x+y=100 \sqrt{3} \Rightarrow x=100 \sqrt{3}-y$
$\Rightarrow \quad x=100 \sqrt{3}-\frac{100}{\sqrt{3}}=\frac{300-100}{\sqrt{3}}=\frac{200}{\sqrt{3}}$
$\Rightarrow \quad x=\frac{200 \sqrt{3}}{3}=\frac{200 \times 1.73}{3}=115.33 \mathrm{~m}$

The distance travelled by the ship is 115.33 m .

Question 13.

From a point on the ground, the angle of elevation of the top of a tower is observed to be 60°. From a point 40 m vertically above the first point of observation, the angle of elevation of the top of the tower is 30°. Find the height of the tower and its
horizontal distance from the point of observation.

Solution:

Let h be the height of the tower and x be the horizontal distance from the point of observation.
\because BDEC is a rectangle,
$\therefore \mathrm{CB}=\mathrm{ED}=x$ and $\mathrm{CE}=\mathrm{BD}=40 \mathrm{~m}$
In $\triangle \mathrm{ABC}, \quad \tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{x} \Rightarrow x=\mathrm{AB} \sqrt{3}$
Now, in $\triangle \mathrm{AED}, \quad \tan 60^{\circ}=\frac{\mathrm{AD}}{\mathrm{DE}}$

$$
\begin{equation*}
\Rightarrow \quad \sqrt{3}=\frac{h}{\mathrm{DE}} \Rightarrow x=\frac{h}{\sqrt{3}} \tag{ii}
\end{equation*}
$$

From equation (i) and (ii), we get

$$
\begin{aligned}
\mathrm{AB} \sqrt{3} & =\frac{h}{\sqrt{3}}[\because \mathrm{AB}+40=h \Rightarrow \mathrm{AB}=h-40] \\
\sqrt{3}(h-40) & =\frac{h}{\sqrt{3}} \\
3(h-40) & =h \Rightarrow 3 h-120=h \\
2 h & =120 \Rightarrow h=60 \mathrm{~m}
\end{aligned}
$$

From (ii),

$$
x=\frac{h}{\sqrt{3}} \Rightarrow x=\frac{60}{\sqrt{3}} \Rightarrow x=\frac{60 \sqrt{3}}{3}
$$

$\Rightarrow \quad x=20 \sqrt{3} \Rightarrow x=34.641 \mathrm{~m}$

Question 14.

A vertical tower stands on a horizontal plane and is surmounted by a flagstaff of height 5 m . From a point on the ground the angles of elevation of the top and bottom of the flagstaff are 60° and 30° respectively. Find the height of the tower and the distance of the point from the tower. (take $=\sqrt{3}=1.732$)

Solution:

Let AB is the tower of height h and DA is the flagstaff of height 5 m and $\mathrm{BC}=x$.
In $\triangle \mathrm{ABC}$,
\Rightarrow

$$
\begin{align*}
\frac{\mathrm{AB}}{\mathrm{BC}} & =\tan 30^{\circ} \\
\frac{h}{x} & =\frac{1}{\sqrt{3}} \\
x & =h \sqrt{3} \tag{i}
\end{align*}
$$

\Rightarrow
Now, in $\triangle \mathrm{DBC}$,

$$
\begin{aligned}
\frac{\mathrm{DB}}{\mathrm{BC}} & =\tan 60^{\circ} \\
\frac{5+h}{x} & =\sqrt{3}
\end{aligned}
$$

$$
\Rightarrow \quad \frac{5+h}{\sqrt{3}}=x
$$

From (i) and (ii), we get

$$
\begin{array}{rlrl}
& & h \sqrt{3} & =\frac{h+5}{\sqrt{3}} \Rightarrow 3 h=h+5 \\
\Rightarrow & 2 h & =5 \\
\Rightarrow & h & =\frac{5}{2}=2.5 \mathrm{~m}
\end{array}
$$

Height of tower is 2.5 m .
Distance of point C from tower $=2.5 \times \sqrt{3}=2.5 \times 1.732=4.33 \mathrm{~m}$

2015

Very Short Answer Type Questions [1 Mark]

Question 15.

The tops of two towers of height x and y, standing on level ground, subtend angles of 30° and 60° respectively at the centre of the line joining their feet, then find $x: y$

Solution:

In $\triangle \mathrm{ABE}$,

$$
\begin{aligned}
& \frac{x}{a}=\tan 30^{\circ} \\
& \frac{x}{a}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

$$
\Rightarrow \quad x=\frac{a}{\sqrt{3}}
$$

In $\triangle C D E$,

Now,

$$
\begin{aligned}
\frac{y}{a} & =\tan 60^{\circ} \\
\frac{y}{a} & =\sqrt{3} \Rightarrow y=a \sqrt{3} \\
\frac{\frac{x}{a}}{\frac{y}{a}} & =\frac{a}{\sqrt{3}} \\
\frac{x}{a} \times \frac{a}{y} & =\frac{a}{\sqrt{3}} \times \frac{1}{a \sqrt{3}} \\
\frac{x}{y} & =\frac{1}{3}
\end{aligned}
$$

Question 16.

In Figure 1, a tower $A B$ is 20 m high and BC, its shadow on the ground, is $20 \sqrt{3} \mathrm{~m}$ long. Find the Sun's altitude.
Solution:
Let Sun's altitude $=\theta=\angle \mathrm{ACB}$

$$
\therefore \quad \begin{aligned}
\tan \theta & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\tan \theta & =\frac{20}{20 \sqrt{3}}=\frac{1}{\sqrt{3}} \Rightarrow \theta=30^{\circ}
\end{aligned}
$$

Question 17.
A pole casts a shadow of length $20 \sqrt{3} \mathrm{~m}$ on the ground, when the sun's elevation is 60°. Find the height of the pole.
Solution:
Let $A B$ is Pole and $B C$ is its shadow
Here

$$
\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}
$$

$$
\begin{array}{ll}
\Rightarrow & \sqrt{3}=\frac{\mathrm{AB}}{2 \sqrt{3}} \\
\Rightarrow & \mathrm{AB}=6 \mathrm{~m}
\end{array}
$$

Question 18.

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of deviation of the top of the tower from the foot of the building is 45°. If the tower is 30 m high, find the height of the building.

Solution:

AB is the tower of height 30 m and CD is the building
In $\triangle A B C$,

$$
\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 45^{\circ}
$$

$$
\frac{30}{x}=1 \Rightarrow x=30 \mathrm{~m}
$$

Now, in $\triangle \mathrm{DCB}$,

$$
\begin{aligned}
\frac{h}{x} & =\tan 30^{\circ} \\
\frac{h}{30} & =\frac{1}{\sqrt{3}} \quad(\because x=30 \mathrm{~m}) \\
h & =\frac{30}{\sqrt{3}}=\frac{30 \sqrt{3}}{3} \\
h & =10 \sqrt{3} \\
h & =10 \times 1.732=17.32 \mathrm{~m}
\end{aligned}
$$

Hence, the height of the building is 17.32 m .

Question 19.

The angle of elevation of an aeroplane from point A on the ground is 60°. After a flight of 15 seconds, the angle of elevation changes to 30°. If the aeroplane is flying at a constant height of $1500 / 3 \mathrm{~m}$, find the speed of the plane in $\mathrm{km} / \mathrm{hr}$.

Solution:

Let plane is at P . After 15 seconds it reaches at Q .
\therefore Distance covered in 15 seconds $=P Q$
In right $\triangle \mathrm{PBA}, \frac{\mathrm{PB}}{\mathrm{AB}}=\tan 60^{\circ}$

$$
\frac{1500 \sqrt{3}}{A B}=\sqrt{3} \Rightarrow A B=1500 \mathrm{~m}
$$

In right $\triangle \mathrm{QCA}$,

$$
\begin{array}{rlrl}
\frac{\mathrm{QC}}{\mathrm{AC}} & =\tan 30^{\circ} \\
\Rightarrow & \frac{1500 \sqrt{3}}{\mathrm{AC}} & =\frac{1}{\sqrt{3}} \\
\Rightarrow & \mathrm{AC} & =4500 \mathrm{~m} \\
\text { Also } \quad \mathrm{BC} & =\mathrm{AC}-\mathrm{AB}=4500-1500=3000 \mathrm{~m} \\
\therefore & \mathrm{PQ} & =\mathrm{BC} \\
\mathrm{PQ} & =3000 \mathrm{~m} \\
\text { Speed } & =\frac{\text { Distance covered }}{\text { Time taken }} \\
& =\frac{3000}{15} \mathrm{~m} / \mathrm{s}=200 \mathrm{~m} / \mathrm{s}=200 \times \frac{3600}{1000} \mathrm{~km} / \mathrm{hr}=720 \mathrm{~km} / \mathrm{hr}
\end{array}
$$

Question 20.

From the top of a tower of height 50 m , the angles of depression of the top and bottom of a pole are 30° and 45° respectively. Find:

1. how far the pole is from the bottom of a tower,
2. the height of the pole. (Use $\sqrt{ } 3=1.732$)

Solution:

(i) Let AB is the tower and CD is the pole such that $\angle \mathrm{XAC}=30^{\circ}$ and $\angle \mathrm{XAD}=45^{\circ}$ $\therefore \angle \mathrm{ACE}=30^{\circ}$ and $\angle \mathrm{ADB}=45^{\circ}$.
Now, in $\triangle \mathrm{ABD}$,

$$
\begin{aligned}
\frac{\mathrm{BD}}{\mathrm{AB}} & =\cot 45^{\circ} \\
\Rightarrow \quad & \frac{\mathrm{BD}}{50}
\end{aligned}=1 \Rightarrow \mathrm{BD}=50
$$

\therefore Distance of pole from the bottom of tower $=50 \mathrm{~m}$
(ii) In $\triangle \mathrm{AEC}$,

$$
\begin{array}{rlrl}
& & \frac{\mathrm{AE}}{\mathrm{EC}} & =\tan 30^{\circ} \\
\Rightarrow & & \frac{\mathrm{AE}}{50} & =\frac{1}{\sqrt{3}} \\
\Rightarrow & & \mathrm{AE} & =\frac{50}{\sqrt{3}} \mathrm{~m} \\
\text { Now, } & \mathrm{CD} & =\mathrm{BE} \\
\Rightarrow & \mathrm{CD} & =\mathrm{AB}-\mathrm{AE} \\
\Rightarrow & & \mathrm{CD} & =50-\frac{50}{\sqrt{3}} \\
& & \\
& & \frac{50 \sqrt{3}-50}{\sqrt{3}}=\frac{50(\sqrt{3}-1)}{\sqrt{3}} \\
& & (\because \mathrm{EC}=\mathrm{BD}] \\
& & & \\
& & \frac{50(\sqrt{3}-1)}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{50(3-1.732)}{3}=21.13 \mathrm{~m} \\
3 &
\end{array}
$$

Hence, the height of the pole is 21.13 m .

Long Answer Type Questions [4 Marks]

Question 21.
From a point P on the ground, the angle of elevation of the top of a tower is 30° and that of the top of a flagstaff fixed on the top of the tower, is 60°. If the length of the flagstaff is 5 m , find the height of the tower.

Solution:

In figure, AD is the flagstaff of height 5 m and BD is the tower of height h. (say)
Let $\mathrm{BP}=x$

$$
\begin{align*}
\text { In } \triangle \mathrm{DBP}, & \frac{\mathrm{DB}}{\mathrm{~PB}} & =\tan 30^{\circ} \\
& \frac{h}{x} & =\frac{1}{\sqrt{3}} \\
\Rightarrow & x & =h \sqrt{3} \tag{i}\\
\text { In } \triangle \mathrm{ABP}, & \frac{\mathrm{AB}}{\mathrm{~PB}} & =\tan 60^{\circ} \\
& \frac{h+5}{x} & =\sqrt{3} \\
\Rightarrow & x & =\frac{h+5}{\sqrt{3}}
\end{align*}
$$

From equation (i) and (ii), we get

$$
\begin{aligned}
& & \frac{h+5}{\sqrt{3}} & =h \sqrt{3} \\
\Rightarrow & & h+5 & =3 h \Rightarrow 2 h=5 \\
\Rightarrow & & h & =\frac{5}{2}=2.5 \mathrm{~m}
\end{aligned}
$$

Hence, height of the tower is 2.5 m .

Question 22.

At a point, A, 20 metres above the level of water in a lake, the angle of elevation of a cloud is 30°. The angle of depression of the reflection of the cloud in the lake, at A, is 60°. Find the distance of the cloud from A,

Solution:

Let C is the cloud and R is its reflection.
$\angle \mathrm{DAC}=30^{\circ}, \angle \mathrm{DAR}=60^{\circ}$, let $\mathrm{CD}=x$
$\therefore \quad$ Height of the cloud above the lake $=(x+20) \mathrm{m}$
$\therefore \quad \mathrm{ER}=(20+x) \mathrm{m}$.
Now, in right $\triangle \mathrm{ADC}$,

$$
\begin{array}{ll}
& \frac{\mathrm{CD}}{\mathrm{AD}}=\tan 30^{\circ} \\
\Rightarrow & \frac{x}{\mathrm{AD}}=\frac{1}{\sqrt{3}} \\
\Rightarrow & \mathrm{AD}=\sqrt{3 x} \tag{i}
\end{array}
$$

In right, $\triangle \mathrm{ADR}$,

$$
\begin{gathered}
\\
\\
\Rightarrow \quad \frac{\mathrm{DR}}{\mathrm{AD}}=\tan 60^{\circ} \\
\Rightarrow \\
\Rightarrow
\end{gathered}
$$

Now, in right $\triangle \mathrm{ADC}$,

$$
\frac{\mathrm{AC}}{\mathrm{CD}}=\operatorname{cosec} 30^{\circ} \Rightarrow \frac{\mathrm{AC}}{20}=2 \Rightarrow \mathrm{AC}=40 \mathrm{~m}
$$

Hence, the distance of the cloud from A is 40 m .

Question 23.

Two poles of equal heights are standing opposite each other on either side of the road which is 80 m wide. From a point P between them on the road, the angle of elevation of the top of a pole is 60° and the angle of depression from the top of another pole at point P is 30°. Find the heights of the poles and the distance of the point P from the poles.

Solution:

Let AB and CD are two poles.
Let $\mathrm{BP}=x$
\therefore
In right $\triangle \mathrm{PBA}$,
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{BP}}=\sqrt{3}$

$$
\mathrm{PD}=(80-x)
$$

$$
\frac{\mathrm{AB}}{\mathrm{BP}}=\tan 60^{\circ}
$$

$$
\frac{\mathrm{AB}}{\mathrm{BP}}=\sqrt{3}
$$

$$
\begin{equation*}
\mathrm{AB}=\sqrt{3} x \tag{i}
\end{equation*}
$$

In right $\triangle C D P$,

$$
\frac{C D}{P D}=\tan 30^{\circ}
$$

$$
\Rightarrow \quad \mathrm{CD}=\frac{1}{\sqrt{3}}(80-x)
$$

$$
\because \quad \mathrm{AB}=\mathrm{CD}
$$

$$
\therefore \quad \sqrt{3} x=\frac{1}{\sqrt{3}}(80-x)
$$

$$
3 x=80-x \Rightarrow 4 x=80 \Rightarrow x=20 \mathrm{~m}
$$

Now,

$$
\begin{equation*}
\mathrm{AB}=\sqrt{3} x \Rightarrow \mathrm{AB}=20 \sqrt{3} \mathrm{~m} \tag{i}
\end{equation*}
$$

Hence, the height of each pole is $20 \sqrt{3} \mathrm{~m}$ and the distance of point P from the pole with angle of elevation 60° is 20 m and the distance of point P from pole with angle of 30° is 60 m .

2014

Short Answer Type Questions II [3 Marks]

Question 24.

Two ships are there in the sea on either side of a lighthouse in such a way that the ships and the lighthouse are in the same straight line. The angles of depression of two ships as observed from the top of the lighthouse are 60° and 45°. If the height of the lighthouse is 200 m , find the distance between the two ships.

Solution:

Let AB be the light house of height 200 m .
C and D are two ships on either sides of light house with angles of depression 60° and 45° respectively.
In $\triangle \mathrm{ABD}$,

$$
\frac{\mathrm{AB}}{\mathrm{BD}}=\tan 45^{\circ} \Rightarrow \frac{200}{\mathrm{BD}}=1
$$

\Rightarrow
Now, in $\triangle A B C$

$$
\mathrm{BD}=200 \mathrm{~m}
$$

$$
\Rightarrow \quad \mathrm{BC}=\frac{200}{\sqrt{3}} \mathrm{~m}
$$

\therefore Distance between the ships $=\mathrm{BC}+\mathrm{BD}=\frac{200}{\sqrt{3}}+200$

$$
\begin{aligned}
& =\frac{200 \sqrt{3}}{3}+200=\frac{200 \times 1.73}{3}+200=\frac{346^{6}}{3}+200 \\
& =115.33+200=315.33 \mathrm{~m}
\end{aligned}
$$

Question 25.

The angle of elevation of an aeroplane from a point on the ground is 60°. After a flight of 30 seconds, the angle of elevation becomes 30°. If the aeroplane is flying at a constant height of $3000 \sqrt{ } 3 \mathrm{~m}$, find the speed of the aeroplane.

Solution:

From the point of observation (O), plane is at $\mathrm{A}, \mathrm{AL}=3000 \sqrt{3} \mathrm{~m}$ and $\angle \mathrm{AOL}=60^{\circ}$.
After 30 seconds, plane is at B , therefore, $\mathrm{BM}=3000 \sqrt{3} \mathrm{~m}$ and $\angle \mathrm{BOM}=30^{\circ}$.
Distance $A B$ is covered in 30 seconds.
In right-angled triangle OLA,

$$
\begin{align*}
& \frac{\mathrm{OL}}{\mathrm{AL}}
\end{align*}=\cot 60^{\circ} .
$$

In right-angled triangle OMB,

$$
\begin{array}{rlrl}
& & \frac{\mathrm{OM}}{\mathrm{BM}} & =\cot 30^{\circ} \\
\Rightarrow & \mathrm{OM} & =3000 \sqrt{3} \times \sqrt{3}=9000 \mathrm{~m} \\
\therefore & \mathrm{AB} & =\mathrm{LM}=\mathrm{OM}-\mathrm{OL}=(9000-3000)=6000 \mathrm{~m} \quad[\text { from }(i) \text { and }(\text { ii })]
\end{array}
$$

Now, distance covered in $30 \mathrm{~s}=6000 \mathrm{~m}$
$\therefore \quad$ Distance covered in 1 hour $(3600 \mathrm{~s})=\frac{6000}{30} \times \frac{3600}{1000} \mathrm{~km}=720 \mathrm{~km}$
\therefore Speed of the aeroplane is $720 \mathrm{~km} / \mathrm{h}$.

Question 26.

Two ships are approaching a lighthouse from opposite directions. The angles of depression of the two ships from the top of the lighthouse are 30° and 45°. If the distance between the two ships is 100 m , find the height of the lighthouse

Solution:

Let AB is lighthouse of height $h \mathrm{~m}$. Two ships are represented by C and D where the angles of depression from the lighthouse are 45° and 30° as shown.
Using alternate angles, $\angle \mathrm{ACB}=45^{\circ}$ and $\angle \mathrm{ADB}=30^{\circ}$.
Let $\mathrm{BC}=x$ and $\mathrm{BD}=y$

$$
\begin{array}{lrl}
\text { Given: } & C D & =100 \mathrm{~m} \\
\Rightarrow & x+y & =100
\end{array}
$$

In right-angled triangle ABC ,

$$
\begin{align*}
& & \frac{\mathrm{BC}}{\mathrm{AB}} & =\cot 45^{\circ} \Rightarrow \frac{x}{h}=1 \\
\Rightarrow & & x & =h \tag{ii}
\end{align*}
$$

In right-angled triangle ABD ,

$$
\begin{align*}
& & \frac{\mathrm{BD}}{\mathrm{AB}} & =\cot 30^{\circ} \quad \Rightarrow \quad \frac{y}{h}=\sqrt{3} \\
\Rightarrow & y & =\sqrt{3} h & \tag{iii}
\end{align*}
$$

Putting the values of x and y from (ii) and (iii) in (i), we have

$$
\begin{aligned}
& \\
& \Rightarrow\left.\begin{array}{l}
h+\sqrt{3} h=100 \\
(\sqrt{3}+1) h=
\end{array}\right) \\
& \Rightarrow \quad h=\frac{100(\sqrt{3}-1)}{3-1} \mathrm{~m} \Rightarrow h=\frac{100}{\sqrt{3}+1} \\
&=50(1.732-1) \mathrm{m}=50 \times 0.732=36.6 \mathrm{~m}
\end{aligned}
$$

Hence, height of the lighthouse is 36.6 m .

Long Answer Type Questions [4 Marks]

Question 27.

The angles of elevation and depression of the top and the bottom of a tower from the top of a building, 60 m high, are 30° and 60° respectively. Find the difference between the heights of the building and the tower and the distance between them

Solution:

Let AB be the tower and CD be the building of height 60 m .
Let
In \triangle AED,
\Rightarrow
$\mathrm{AE}=\mathrm{h}$ and $\mathrm{BC}=x$

$$
\frac{\mathrm{AE}}{\mathrm{DE}}=\tan 30^{\circ}
$$

\Rightarrow
In $\triangle \mathrm{DCB}$,

$$
\begin{equation*}
\frac{h}{x}=\frac{1}{\sqrt{3}} \quad[\because \mathrm{DE}=\mathrm{BC}=x] \tag{i}
\end{equation*}
$$

$$
\frac{\mathrm{DC}}{\mathrm{CB}}=\tan 60^{\circ}
$$

$\Rightarrow \quad \frac{60}{x}=\sqrt{3} \Rightarrow x=\frac{60}{\sqrt{3}}=20 \sqrt{3}$
\therefore Distance between the tower and the building is $20 \sqrt{3} \mathrm{~m}$.

$$
\because \quad h=\frac{x}{\sqrt{3}}=\frac{20 \sqrt{3}}{\sqrt{3}}=20 \mathrm{~m}
$$

Difference between the heights of the building and the tower is 20 m .

Question 28.

From the top of a 60 m high building, the angles of depression of the top and the bottom of a tower are 45° and 60° respectively. Find the height of the tower.

Solution:

Let AB be 60 m high building and CD be the tower of height h. Angles of depression from top of building to the top and the bottom of the tower are 45° and 60° respectively.

$$
\begin{array}{llrl}
\therefore & \angle \mathrm{ACE} & =45^{\circ} \text { and } & \angle \mathrm{ADB}=60^{\circ} \\
\text { Let } & \mathrm{BD} & =\mathrm{CE}=x \\
\therefore & \mathrm{BE}=\mathrm{CD} & =h \\
& & \mathrm{AE} & =60-h
\end{array}
$$

In right-angled triangle ABD ,

$$
\begin{array}{rlrl}
& & \frac{\mathrm{BD}}{\mathrm{AB}} & =\cot 60^{\circ} \\
\Rightarrow & & \frac{x}{60} & =\frac{1}{\sqrt{3}} \\
\Rightarrow & x & =\frac{60}{\sqrt{3}}=\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=20 \sqrt{3}
\end{array}
$$

In right-angled triangle AEC,

$$
\left.\begin{array}{rlrl}
& & \frac{\mathrm{AE}}{\mathrm{CE}} & =\tan 45^{\circ} \\
\Rightarrow & & \frac{60-h}{x} & =1 \\
\Rightarrow & & 60-h & =x \\
\Rightarrow & h & =60-x \\
\Rightarrow & h & =60-20 \sqrt{3} \\
\Rightarrow & & h & =20[3-\sqrt{3}]=20[3-1.73]=20 \times 1.27=25.4 \mathrm{~m}
\end{array} \quad \quad \text { using }(i)\right] \text {] }
$$

\therefore Height of the tower is 25.4 m .

Question 29.

The angle of elevation of the top of a tower at a distance of 120 m from point A on the ground is 45°. If the angle of elevation of the top of a flagstaff fixed at the top of the tower, at A is 60°, then find the height of the flagstaff.

Solution:

Let BC be the tower and BD be the flagstaff of height h.
Let $\mathrm{BC}=x$
$\mathrm{AC}=120 \mathrm{~m}, \angle \mathrm{BAC}=45^{\circ}$ and $\angle \mathrm{DAC}=60^{\circ}$
In right-angled triangle ACB ,

$$
\begin{array}{rlrl}
& & \frac{\mathrm{AC}}{\mathrm{BC}} & =\cot 45^{\circ} \Rightarrow \frac{120}{x}=1 \\
\Rightarrow & x & =120 \tag{i}
\end{array}
$$

In right-angled triangle ACD ,

$$
\begin{aligned}
& \frac{\mathrm{CD}}{\mathrm{AC}}=\tan 60^{\circ} \Rightarrow \frac{h+x}{\left(4^{\circ}\right.}=\sqrt{3} \\
& \Rightarrow \quad h+x=120 \sqrt{3} \\
& \Rightarrow \quad h=120|\sqrt{3}-1| \\
& \Rightarrow \quad h=129[1.73-1 \mid \mathrm{m} \\
& \Rightarrow \quad h=120 \times 0.73=8.7 .6 \mathrm{~m}
\end{aligned}
$$

\therefore Height of the flagstaff is 87.6 m .

Question 30.

The angle of elevation of the top of a chimney from the foot of a tower is 60° and the angle of depression of the foot of the chimney from the top of the tower is 30°. If the height of the tower is 40 m , find the height of the chimney. According to pollution control norms, the minimum height of a smoke emitting chimney should be 100 m . State if the height of the above-mentioned chimney meets the pollution norms. What value is discussed in this question?

Solution:

Let AB represents the tower of height 40 m and CD represents the chimney of height h. Let $\mathrm{BD}=x$
Using alternate angle, $\angle \mathrm{ADB}=30^{\circ}$ and $\angle \mathrm{CBD}=60^{\circ}$
In right-angled triangle ABD ,

$$
\begin{aligned}
& & \frac{\mathrm{BD}}{\mathrm{AB}} & =\cot 30^{\circ} \Rightarrow \frac{x}{40}=\sqrt{3} \\
\Rightarrow & & x & =40 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

In right-angled triangle BDC ,

$$
\begin{array}{rlrl}
& & \frac{\mathrm{CD}}{\mathrm{BD}} & =\tan 60^{\circ} \\
\Rightarrow & \frac{h}{40 \sqrt{3}} & =\sqrt{3} \\
\Rightarrow & & h & =40 \times 3=120 \mathrm{~m}
\end{array}
$$

[from (i)]

\therefore Height of the chimney is 120 m .
Here chimney meets the norms of pollution controller. In this question, care has been taken to control the pollution because pollution is a big health hazard.

2013

Short Answer Type Questions II [3 Marks]

Question 31.

The horizontal distance between the two poles is 15 m . The angle of depression of the top of the first pole as seen from the top of the second pole is 30°. If the height of the second pole is 24 m , find the height of the first pole

Solution:

In figure, $A B$ is the $1^{\text {st }}$ pole and $C D$ is $2^{\text {nd }}$ pole.

$$
\begin{aligned}
\text { In } \triangle \mathrm{CEA}, & \frac{\mathrm{CE}}{\mathrm{AE}} & =\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
\Rightarrow & \frac{x}{15} & =\frac{1}{\sqrt{3}} \Rightarrow x=\frac{15}{\sqrt{3}} \mathrm{~m} \\
\Rightarrow & x & =\frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=5 \sqrt{3} \mathrm{~m} \\
\text { Now, } & \mathrm{DE} & =24-x=24-5 \sqrt{3} \\
& & =24-5 \times 1.732 \\
& & =24-8.660 \\
& & =15.34 \mathrm{~m}
\end{aligned}
$$

$\mathrm{AB}=\mathrm{DE}=15.34 \mathrm{~m}$
Hence, height of the first pole is 15.34 m .

Question 32.

As observed from the top of a 60 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

Solution:

Let one ship be at point P and other ship be at point Q. $A B$ be lighthouse of height 60 m .
In $\triangle A B P$,

$$
\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BP}}
$$

$$
\Rightarrow \quad 1=\frac{60}{\mathrm{BP}}
$$

$$
\Rightarrow
$$

$$
\mathrm{BP}=60 \mathrm{~m}
$$

In $\triangle \mathrm{ABQ}$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BQ}} \\
\frac{1}{\sqrt{3}} & =\frac{\mathrm{AB}}{\mathrm{BQ}}
\end{aligned}
$$

$$
B Q=A B \sqrt{3}=60(\sqrt{3})=60(1.732)=103.92 \mathrm{~m}
$$

Distance between two ships $=B Q-B P=103.92-60=43.92 \mathrm{~m}$

Question 33.

The angles of elevation of the top of a tower from two points at a distance of 6 m and 13.5 m from the base of the tower and in the same straight line with it are complementary. Find the height of the tower.

Solution:

$\angle \mathrm{ACB}$ and $\angle \mathrm{ADB}$ are complementary angles.
Let
$\angle \mathrm{ACB}=\theta \Rightarrow \angle \mathrm{ADB}=90^{\circ}-\theta$
Let height of the tower

$$
\mathrm{AB}=h
$$

In $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\tan \theta=\frac{h}{6} \tag{i}
\end{equation*}
$$

In $\triangle \mathrm{ABD}, \quad \tan \left(90^{\circ}-\theta\right)=\frac{h}{13.5} \quad \Rightarrow \cot \theta=\frac{h}{13.5}$

$$
\Rightarrow
$$

$$
\tan \theta=\frac{13.5}{h}
$$

$$
\frac{h}{6}=\frac{13.5}{h}
$$

$$
\Rightarrow \quad h^{2}=13.5 \times 6=81.0 \Rightarrow h=9 \mathrm{~m}
$$

Short Answer Type Questions II [3 Marks]

Question 34.

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 60 m high, find the height of the building.

Solution:

Let AB is the building and CD is the tower.
In $\triangle \mathrm{DCB}, \quad \frac{60}{x}=\tan 60^{\circ} \Rightarrow x=\frac{60}{\sqrt{3}}$
Now, in $\triangle \mathrm{ABC}, \quad \frac{\mathrm{AB}}{x}=\tan 30^{\circ}$
$\begin{array}{ll}\Rightarrow & \stackrel{x}{\mathrm{AB}}=\frac{x}{\sqrt{3}} \\ \Rightarrow & \mathrm{AB}=\frac{60}{\sqrt{3} \times \sqrt{3}}=\frac{60}{3}=20 \mathrm{~m} \quad \text { [Using }(i) \text {] }\end{array}$
Hence, height of the building is 20 m .

Question 35.

From point P on the ground, the angle of elevation of the top of a 10 m tall building is 30°. A flagstaff is fixed at the top of the building and the angle of elevation of the top of the flagstaff from point P is 45°. Find the length of the flagstaff and the distance of the building from point P.

Solution:

Let height of flagstaff be h and the distance of the building from the point P be x.
In $\triangle B C P$,
\Rightarrow
\Rightarrow

$$
\begin{aligned}
\frac{\mathrm{BC}}{\mathrm{CP}} & =\tan 30^{\circ}=\frac{1}{\sqrt{3}} \\
\frac{10}{x} & =\frac{1}{\sqrt{3}}
\end{aligned}
$$

In $\triangle \mathrm{ACP}$,

$$
\frac{\mathrm{AC}}{\mathrm{PC}}=\tan 45^{\circ}
$$

$$
\Rightarrow \quad \frac{h+10}{x}=1 \Rightarrow h+10=x
$$

$$
\Rightarrow \quad h+10=10 \sqrt{3}
$$

[From (i)]
$\Rightarrow \quad h=10(\sqrt{3}-1)=10(1.73-1)=10 \times(0.73)=7.3 \mathrm{~m}$
$\therefore \quad$ Height of the flagstaff is 7.3 m .
The distance of the building from the point $P=10 \sqrt{3}=10 \times 1.73=17.3 \mathrm{~m}$

Question 36.

Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distances of the point from the poles.

Solution:

In figure, AB and CD are two poles of equal heights h.
Let $\mathrm{BP}=x$ and $\mathrm{PD}=80-x$
In $\triangle \mathrm{ABP}$,

$$
\frac{h}{x}=\tan 60^{\circ}=\sqrt{3}
$$

\Rightarrow
$h=\sqrt{3} x$

In $\triangle C D P$,

$$
\begin{align*}
\frac{h}{80-x} & =\tan 30^{\circ}=\frac{1}{\sqrt{3}} \tag{i}\\
h & =\frac{80-x}{\sqrt{3}}
\end{align*}
$$

From equation (i) and (ii), we get

$$
\begin{aligned}
& \sqrt{3} x
\end{aligned}=\frac{80-x}{\sqrt{3}}, ~(3 x=80-x \Rightarrow 4 x=80 \Rightarrow x=20
$$

Putting the value $x=20$ in equation (i), we get

$$
h=20 \sqrt{3}
$$

\therefore Height of the each pole is $20 \sqrt{3} \mathrm{~m}$.
Distance of the point P from the pole $A B=20 \mathrm{~m}$
Distance of the point P from the pole $C D=80-20=60 \mathrm{~m}$

Question 37.

From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower Solution:
Let AB be the height of the building and CE be the height of the cable tower.
$\mathrm{AB}=7 \mathrm{~m}, \angle \mathrm{CAD}=60^{\circ}$ and $\angle \mathrm{DAE}=30^{\circ}$

$$
\begin{aligned}
\text { In } \triangle \mathrm{ADC}, & \tan 60^{\circ} & =\frac{\mathrm{CD}}{\mathrm{AD}} \\
\Rightarrow & \sqrt{3} & =\frac{\mathrm{CD}}{\mathrm{AD}} \\
\Rightarrow & \mathrm{AD} & =\frac{\mathrm{CD}}{\sqrt{3}} \\
\text { In } \triangle \mathrm{ADE}, & \tan 30^{\circ} & =\frac{\mathrm{DE}}{\mathrm{AD}} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{\mathrm{DE}}{\mathrm{AD}} \\
\Rightarrow & \mathrm{AD} & =\mathrm{DE}(\sqrt{3})
\end{aligned}
$$

From (i) and (ii), we get

$$
\frac{\mathrm{CD}}{\sqrt{3}}=\mathrm{DE}(\sqrt{3})
$$

$$
\frac{C D}{\sqrt{3}}=7(\sqrt{3}) \Rightarrow C D=21 \mathrm{~m} \quad[\because \mathrm{DE}=7 \mathrm{~m}]
$$

Total height of the cable tower $=\mathrm{CD}+\mathrm{DE}=21+7=28 \mathrm{~m}$

Short Answer Type Questions II [3 Marks]

Question 38.

The shadow of a tower standing on level ground is found to be 20 m longer when the sun's altitude is 45° than when it is 60°. Find the height of the tower.

Solution:

Let AB be the tower of the height x.
45° and 60° are the two sun's altitudes at two different times.

Let

$$
\mathrm{CD}=20 \mathrm{~m}
$$

In $\triangle A B C$,

$$
\mathrm{BC}=y
$$

$\Rightarrow \quad \frac{x}{y}=\sqrt{3}$ (given)
\Rightarrow

$$
x=\sqrt{3} y
$$

In $\triangle \mathrm{ABD}$,

$$
\begin{align*}
\frac{\mathrm{AB}}{\mathrm{BD}} & =\tan 45^{\circ} \\
\frac{x}{y+20} & =1 \\
x & =y+20 \\
\sqrt{3} y & =y+20 \\
\sqrt{3} y-y & =20 \\
y(\sqrt{3}-1) & =20 \\
y & =\frac{20}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =\frac{20(\sqrt{3}+1)}{3-1}=10(\sqrt{3}+1)=10(1.732+1)=27.32 \mathrm{~m} \\
x & =\sqrt{3} y \tag{i}\\
& =\sqrt{3} \times 27.32=1.732 \times 27.32=47.31 \mathrm{~m}
\end{align*} \quad[\text { From }(i)] \text {] } \quad \text {] } \quad \text {] }
$$

Hence, height of the tower is 47.31 m .

Question 39.

The angles of depression of two ships from the top of a lighthouse and on the same side of it are found to be 45° and 30°. If the ships are 200 m apart, find the height of the lighthouse

Solution:

Let h be the height of the lighthouse.

$$
\begin{array}{rlrl}
& \text { In } \triangle \mathrm{ABC}, & \tan 45^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\Rightarrow & 1 & =\frac{h}{\mathrm{BC}} \\
\Rightarrow & \mathrm{BC} & =h & \ldots(i) \\
\text { In } \triangle \mathrm{ABD}, & \tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BD}} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{h}{200+\mathrm{BC}} \\
\Rightarrow & h & =\frac{200+\mathrm{BC}}{\sqrt{3}} \Rightarrow h=\frac{200+h}{\sqrt{3}} \\
\Rightarrow & \sqrt{3} h & =200+h \Rightarrow(\sqrt{3}-1) h=200 \\
\Rightarrow & (1.732-1) h & =200 \Rightarrow h=\frac{200}{0.732}=273.22 \mathrm{~m}
\end{array}
$$

Question 40.

A kite is flying at a height of 45 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string assuming that there is no slack in the string.

Solution:

Let $A B$ be the length of the string.
In $\triangle \mathrm{ABC}, \quad \sin 60^{\circ}=\frac{\mathrm{AC}}{\mathrm{AB}}$

$$
\begin{array}{ll}
\Rightarrow & \frac{\sqrt{3}}{2}=\frac{45}{\mathrm{AB}} \\
\Rightarrow & \mathrm{AB}=\frac{90}{\sqrt{3}}=\frac{90}{3} \times \sqrt{3}=30 \sqrt{3}=30 \times 1.732=51.96
\end{array}
$$

Question 41.

The angles of depression of the top and bottom of a tower as seen from the top of a $60 \sqrt{ } 3 \mathrm{~m}$ high cliff are 45° and 60° respectively. Find the height of the tower.

Solution:

Let h be the height of the tower.

$$
\text { In } \triangle \mathrm{ABC}
$$

$$
\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ}
$$

$$
\Rightarrow \quad \frac{60 \sqrt{3}}{\mathrm{BC}}=\sqrt{3}
$$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{BC}=60 \mathrm{~m} \tag{i}
\end{equation*}
$$

Now, in $\triangle \mathrm{AED}$,

$$
\frac{\mathrm{AE}}{\mathrm{ED}}=\tan 45^{\circ}
$$

$$
\Rightarrow \quad \frac{60 \sqrt{3}-h}{\mathrm{BC}}=1 \quad[\because \mathrm{AE}=\mathrm{AB}-\mathrm{BE}]
$$

$$
\Rightarrow \quad 60 \sqrt{3}-h=\mathrm{BC}
$$

$$
\Rightarrow \quad 60 \sqrt{3}-h=60
$$

$$
\Rightarrow \quad h=60 \sqrt{3}-60 \Rightarrow h=60(\sqrt{3}-1)
$$

[From (i)]
$\Rightarrow \quad h=60(1.73-1)=60 \times 0.73=43.8 \mathrm{~m}$

Question 42.

From the top of a tower 50 m high, the angle of depression of the top of a pole is 45° and from the foot of the pole, the angle of elevation of the top of the tower is 60°.
Find the height of the pole if the pole and tower stand on the same plane

Solution:

EC is transversal to the parallel lines EF and CD.

$$
\therefore \quad \angle \mathrm{FEC}=\angle \mathrm{DCE}=45^{\circ}
$$

Let the height of the pole is h.

$$
\text { In right } \triangle \mathrm{EDC}, \quad \tan 45^{\circ}=\frac{\mathrm{ED}}{\mathrm{DC}}, \quad \begin{aligned}
1 & =\frac{50-h}{\mathrm{DC}} \\
\mathrm{DC} & =50-h=\mathrm{AB}
\end{aligned}
$$

In right $\triangle \mathrm{EAB}$,

$$
\tan 60^{\circ}=\frac{\mathrm{EA}}{\mathrm{AB}}
$$

$$
\Rightarrow \quad \sqrt{3}=\frac{50}{\mathrm{AB}}
$$

$$
\therefore \quad \sqrt{3}=\frac{50}{50-h}[\text { From }(i) \text { and }(i i)]
$$

$$
\Rightarrow \quad 50-h=\frac{50}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \Rightarrow(50-h)=\frac{50 \times 1.73}{3}
$$

$$
\Rightarrow \quad 3(50-h)=86.50 \Rightarrow 150-3 h=86.50
$$

$$
\Rightarrow \quad 150-86.50=3 h \Rightarrow 63.50=3 h
$$

$$
\Rightarrow \quad h=\frac{63.50}{3} \Rightarrow h=21.16 \mathrm{~m}
$$

Question 43.

The angle of depression from the top of a tower of point A on the ground is 30°. On moving a distance of 20 m from point A towards the foot of the tower to point B, the angle of elevation of the top of the tower from point B is 60°. Find the height of the tower and its distance from point A.

Solution:

AD is transversal to parallel lines DE and CA ,
$\therefore \quad \angle \mathrm{ADE}=\angle \mathrm{DAC}=30^{\circ}$
Let the height of the tower is h.
In right $\triangle \mathrm{DCB}$,

$$
\tan 60^{\circ}=\frac{\mathrm{DC}}{\mathrm{BC}}
$$

$$
\Rightarrow \quad \sqrt{3}=\frac{h}{\mathrm{BC}}
$$

$$
\begin{equation*}
\mathrm{BC}=\frac{h}{\sqrt{3}} \tag{i}
\end{equation*}
$$

$$
\begin{array}{rlrl}
\text { In right } \triangle \mathrm{DCA}, & \tan 30^{\circ} & =\frac{\mathrm{DC}}{\mathrm{AC}} \\
\Rightarrow & & \frac{1}{\sqrt{3}} & =\frac{h}{\mathrm{BC}+\mathrm{AB}} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{h}{\mathrm{BC}+20} \\
\Rightarrow & B C+20 & =\sqrt{3} h \\
\Rightarrow & \frac{h}{\sqrt{3}}+20 & =\sqrt{3} h \\
\Rightarrow & & \sqrt{3} h-\frac{h}{\sqrt{3}} & =20 \\
\Rightarrow & h\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) & =20 \\
\Rightarrow & h\left(\frac{3-1}{\sqrt{3}}\right) & =20 \\
\Rightarrow & h & =\frac{20 \sqrt{3}}{2}=10 \sqrt{3} \\
\Rightarrow & h & =10 \times 1.73=17.30 \mathrm{~m}
\end{array}
$$

On putting $h=10 \sqrt{3}$ in equation (i), we get

$$
\mathrm{BC}=\frac{10 \sqrt{3}}{\sqrt{3}}=10 \mathrm{~m}
$$

So, the height of the tower in 17.30 m and its distance from point $\mathrm{A}=20+10=30 \mathrm{~m}$

Long Answer Type Questions [4 Marks]

Question 44.

The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of depression from the top of the tower at the foot of the hill is 30°. If the tower is 50 m high, find the height of the hill.

Solution:

Let $A B$ be the tower of the height 50 m .
Let DC be the hill of the height x.
Let y be the distance between foot of the hill and the tower.

$$
\begin{array}{rlrl}
& & \angle \mathrm{CBD} & =60^{\circ} \\
& \angle \mathrm{PAD} & =\angle \mathrm{ADB}=30^{\circ} \\
\text { In } \triangle \mathrm{ABD}, & \text { [Alternate angles] } \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{BD}} & =\tan 30^{\circ} \\
\Rightarrow & \frac{50}{y} & =\frac{1}{\sqrt{3}} \\
\text { In } \triangle \mathrm{CDB}, & y & =50 \sqrt{3} \mathrm{~m} \tag{i}\\
\Rightarrow & \frac{\mathrm{CD}}{\mathrm{BD}} & =\tan 60^{\circ} \Rightarrow \frac{x}{y}=\sqrt{3} \\
& & \frac{x}{50 \sqrt{3}} & =\sqrt{3} \Rightarrow x=150 \mathrm{~m}
\end{array}
$$

[From (i)]
Hence, height of the hill is 150 m .

Question 45.

The angles of elevation and depression of the top and bottom of a lighthouse from the top of a 60 m high building are 30° and 60° respectively. Find

1. the difference between the heights of the lighthouse and the building.
2. the distance between the lighthouse and the building

Solution:

Let $A B$ is the building and $C D$ is the lighthouse.

$$
\begin{array}{rlrl}
& \therefore & \mathrm{AB} & =60 \mathrm{~m} \\
\because & \angle \mathrm{EAC} & =30^{\circ} \text { and } \quad \angle \mathrm{EAD}=60^{\circ} \\
\therefore & \mathrm{AE} & \| \mathrm{BD} \\
& \text { In right } \triangle \mathrm{ABD}, & \angle \mathrm{ADB} & =60^{\circ} \\
\Rightarrow & \frac{\mathrm{BD}}{\mathrm{AB}} & =\cot 60^{\circ} \\
\Rightarrow & \frac{\mathrm{BD}}{60} & =\frac{1}{\sqrt{30}} \\
& & \mathrm{BD} & =\frac{60}{\sqrt{3}}=\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=20 \sqrt{3} \mathrm{~m} \\
& & \mathrm{AE} & =20 \sqrt{3} \mathrm{~m} \\
\Rightarrow & & & \\
& & &
\end{array}
$$

(i) Difference between the heights of the lighthouse and the building $=\mathrm{CE}=20 \mathrm{~m}$.
(ii) The distance between the lighthouse and the building $=\mathrm{BD}=20 \sqrt{3} \mathrm{~m}$.

Short Answer Type Questions II [3 Marks]

Question 46.

From the top of a tower 100 m high, a man observes two cars on the opposite sides of the tower with angles of depression 30° and 45° respectively. Find the distance between the cars

Solution:

Let $\mathrm{BD}=y$ and $\mathrm{CD}=x$
$\begin{array}{rlrl}\text { In right } \triangle \mathrm{ADB}, & \frac{\mathrm{AD}}{\mathrm{BD}} & =\tan 45^{\circ} \Rightarrow \quad \Rightarrow \quad \frac{100}{y}=1 \\ \Rightarrow & y & =100 \\ & \text { In right } \triangle \mathrm{ADC}, & \frac{\mathrm{AD}}{\mathrm{CD}} & =\tan 30^{\circ} \\ \Rightarrow & \frac{100}{x} & =\frac{1}{\sqrt{3}} \\ \Rightarrow & x & =100 \sqrt{3} \\ \Rightarrow & y+x & =100+100 \sqrt{3} \\ & & & \\ & & & \\ & & & \end{array}$
Hence, distance between two cars is 273.2 m .

Question 47.

From the top of a vertical tower, the angles of depression of two cars in the same straight line with the base of the tower, at an instant are found to be 45° and 60°. If the cars are 100 m apart and are on the same side of the tower, find the height of the tower.

Solution:

Let AB be the tower of height h and C and D are positions of the cars.
Let $\mathrm{BC}=x$
In $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\Rightarrow \tag{i}
\end{equation*}
$$

$$
\begin{align*}
\frac{\mathrm{AB}}{\mathrm{BC}} & =\tan 60^{\circ} \Rightarrow \frac{h}{x}=\sqrt{3} \\
x & =\frac{h}{\sqrt{3}} \\
\frac{\mathrm{AB}}{\mathrm{BD}} & =\tan 45^{\circ} \Rightarrow \frac{h}{100+x}=1 \\
h & =100+x \tag{ii}
\end{align*}
$$

In $\triangle \mathrm{ABD}$,
\Rightarrow

$$
\begin{aligned}
\text { From (i) and (ii), we get } & \\
& h \\
\Rightarrow \quad & 100+\frac{h}{\sqrt{3}} \Rightarrow h-\frac{h}{\sqrt{3}}=100 \\
\Rightarrow \quad \sqrt{3} h-h & =100 \sqrt{3} \Rightarrow(\sqrt{3}-1) h=100 \sqrt{3} \\
\Rightarrow \quad h & =\frac{100 \sqrt{3}}{\sqrt{3}-1} \\
\Rightarrow \quad h & =\frac{100 \sqrt{3}(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\frac{100(3+\sqrt{3})}{2} \\
& =50 \times(3+1.73)=50 \times 4.73=236.5 \mathrm{~m}
\end{aligned}
$$

Hence, the height of the tower is 236.5 m .

Question 48.

A ladder of length 6 m makes an angle of 45° with the floor while leaning against one wall of a room. If the foot of the ladder is kept fixed on the floor and it is made to lean against the opposite wall of the room, it makes an angle of 60° with the floor. Find the distance between these two walls of the room.

Solution:

Let AP and DP be the positions of the ladder whose length is 6 m .
In right $\triangle \mathrm{ABP}$,

$$
\frac{\mathrm{BP}}{\mathrm{AP}}=\cos 60^{\circ} \Rightarrow \frac{\mathrm{BP}}{6}=\frac{1}{2}
$$

$\Rightarrow \quad B P=\frac{1}{2} \times 6=3 \mathrm{~m}$
In right $\triangle \mathrm{DCP}$,

$$
\frac{\mathrm{PC}}{\mathrm{DP}}=\cos 45^{\circ} \Rightarrow \frac{\mathrm{PC}}{6}=\frac{1}{\sqrt{2}}
$$

$\Rightarrow \quad \mathrm{PC}=\frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{6 \sqrt{2}}{2}=3 \sqrt{2} \mathrm{~m}$

Distance between two walls $=\mathrm{BP}+\mathrm{PC}=3+3 \sqrt{2}=3+3 \times 1.41=3(1+1.41)$

$$
=3 \times 2.42=7.23 \mathrm{~m}
$$

Long Answer Type Questions [4 Marks]

Question 49.

Two poles of equal heights are standing opposite each other on either side of the road, which is 100 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles

Solution:

Let AB and CD be the two poles of equal height h.

$$
\left.\begin{array}{ll}
\text { In } \triangle \mathrm{ABP}, & \frac{h}{x}
\end{array} \begin{array}{ll}
& =\tan 60^{\circ}=\sqrt{3} \\
\Rightarrow & x \tag{i}
\end{array}\right)=\frac{h}{\sqrt{3}}
$$

In $\triangle \mathrm{DCP}, \frac{h}{100-x}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

$$
\begin{equation*}
\Rightarrow \quad \sqrt{3} h=100-x \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad x=100-h \sqrt{3}$
From (i) and (ii), we get

$$
\frac{h}{\sqrt{3}}=100-h \sqrt{3} \Rightarrow h=100 \sqrt{3}-3 h \Rightarrow 4 h=100 \sqrt{3} \Rightarrow h=25 \sqrt{3}
$$

So, the height of each pole is $25 \sqrt{3} \mathrm{~m}$.

Question 50.

From a point on the ground, the angles of elevation of the bottom and top of a transmission tower fixed at the top of a 10 m high building are 30° and 60° respectively. Find the height of the tower.

Solution:

Let CA be the transmission tower of height h.
Le $\mathrm{PB}=x$

In $\triangle \mathrm{ABP}$,	$\frac{\mathrm{AB}}{\mathrm{BP}}=\tan 30^{\circ}$
\Rightarrow	$\begin{equation*} \frac{10}{x}=\frac{1}{\sqrt{3}} \Rightarrow x=10 \sqrt{3} \tag{i} \end{equation*}$
In $\triangle C B P$,	$\frac{\mathrm{CB}}{\mathrm{~PB}}=\tan 60^{\circ}$
\Rightarrow	$\frac{h+10}{x}=\sqrt{3}$
\Rightarrow	$h+10=\sqrt{3} x$
\Rightarrow	$h+10=\sqrt{3} \times \sqrt{3} \times 10$
\Rightarrow	$h+10=30 \Rightarrow h=20 \mathrm{~m}$

Hence, the height of the tower is 30 m .

Question 51.

From the top of a 15 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower.

Solution:

Let h be the height of the tower.
Let

$$
\mathrm{AB}=y
$$

In $\triangle \mathrm{ABC}, \quad \tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$

$$
\begin{equation*}
\Rightarrow \quad \sqrt{3}=\frac{y}{\mathrm{BC}} \Rightarrow y=\sqrt{3} \mathrm{BC} \tag{i}
\end{equation*}
$$

Now, in $\triangle \mathrm{CBD}, \tan 30^{\circ}=\frac{\mathrm{BD}}{\mathrm{BC}}$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{15}{\mathrm{BC}} \\
\Rightarrow & \mathrm{BC}=15 \sqrt{3}
\end{array}
$$

From (i) and (ii), we get

$$
y=\sqrt{3} \times 15 \sqrt{3}=15 \times 3=45 \mathrm{~m}
$$

So, height of the tower is $y+15=45+15=60 \mathrm{~m}$

Question 52.

The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point, 10 m vertically above the first, its angle of elevation is 30 . Find the height of the tower.

Solution:

Let $A B$ is the tower.
Let

$$
\mathrm{BC}=x \text { and } \mathrm{AE}=y
$$

\Rightarrow

$$
\mathrm{BE}=\mathrm{CD}=10 \mathrm{~m}
$$

Also,

$$
\mathrm{BC}=\mathrm{DE}=x
$$

In right $\triangle \mathrm{AED}$,

$$
\begin{aligned}
\frac{\mathrm{AE}}{\mathrm{DE}} & =\tan 30^{\circ} \Rightarrow \frac{y}{x}=\frac{1}{\sqrt{3}} \\
x & =\sqrt{3} y
\end{aligned}
$$

In right $\triangle \mathrm{ABC}$,

$$
\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ}
$$

$$
\Rightarrow \quad \frac{y+10}{x}=\sqrt{3}
$$

$$
y+10=\sqrt{3} x
$$

$$
\Rightarrow \quad y+10=\sqrt{3}(\sqrt{3} y)
$$

$\Rightarrow \quad y+10=3 y \Rightarrow 2 y=10 \Rightarrow y=5 \mathrm{~m}$
$\therefore \quad$ The height of the tower $=\mathrm{AE}+\mathrm{BE}=5+10=15 \mathrm{~m}$

Question 53.

The angles of depression of the top and bottom of a 12 m tall building, from the top of a multi-storeyed building. the multi-storeyed building is 30° and 60° respectively. Find the height of the multi-storeyed building.

Solution:

Let AB be the multi-storeyed building of height h.
CD be the building of height 12 m .

Let	BC	$=x$	
In $\triangle \mathrm{ABC}$,	$\frac{\mathrm{AB}}{\mathrm{BC}}$	$=\tan 60^{\circ}$	
\Rightarrow	$\frac{h}{x}$	$=\sqrt{3}$	
\Rightarrow	x	$=\frac{h}{\sqrt{3}}$	$\ldots(i)$
In $\triangle \mathrm{AED}$,	$\frac{\mathrm{AE}}{\mathrm{DE}}$	$=\tan 30^{\circ}$	
\Rightarrow	$\frac{h-12}{x}$	$=\frac{1}{\sqrt{3}}[\because \mathrm{DE}=\mathrm{BC}]$	
\Rightarrow	$h \sqrt{3}-12 \sqrt{3}$	$=x$	

From (i) and (ii), we get

$$
\begin{array}{rlrl}
& & \frac{h}{\sqrt{3}} & =h \sqrt{3}-12 \sqrt{3} \\
\Rightarrow & h & =3 h-36 \Rightarrow 2 h=36 \Rightarrow h=18 \mathrm{~m}
\end{array}
$$

Hence, the height of the multi-storeyed building is 18 m .

Question 54.

The angle of elevation of the top of a building from the foot of a tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the 50 m high, find the height of the building

Solution:

Let CD be the building of height h and AB be the tower of height 50 m .
In $\triangle \mathrm{BAC}, \quad \frac{\mathrm{AB}}{\mathrm{AC}}=\tan 60^{\circ} \Rightarrow \frac{50}{x}=\sqrt{3}$
$\Rightarrow \quad x=\frac{50}{\sqrt{3}}$
In $\triangle \mathrm{DCA}, \quad \frac{\mathrm{DC}}{\mathrm{CA}}=\tan 30^{\circ}$
$\Rightarrow \quad \frac{h}{x}=\frac{1}{\sqrt{3}}$
$\Rightarrow \quad h=\frac{x}{\sqrt{3}}=\frac{1}{\sqrt{3}} \times \frac{50}{\sqrt{3}}=\frac{50}{3}=16.67 \mathrm{~m}$
[From (i)]

Question 55.

A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. 10 seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.
Solution:
In $\triangle \mathrm{ABC}, \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ} \Rightarrow \frac{h}{x}=\sqrt{3}$

$$
\begin{equation*}
\Rightarrow \quad h=\sqrt{3} x \tag{i}
\end{equation*}
$$

$$
\text { In } \triangle \mathrm{ABD}, \quad \frac{\mathrm{AB}}{\mathrm{BD}}=\tan 30^{\circ}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{h}{x+y}=\frac{1}{\sqrt{3}} \Rightarrow h=\frac{x+y}{\sqrt{3}} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we get

$$
\begin{aligned}
\sqrt{3} x & =\frac{x+y}{\sqrt{3}} \\
\Rightarrow \quad 3 x & =x+y \Rightarrow 2 x=y \Rightarrow x=\frac{y}{2}
\end{aligned}
$$

It is given that car covers a distance of y in 10 seconds. So, in order to cover the distance $x=\frac{y}{2}$, car will take 5 seconds. So, total time taken by the car to reach the foot of the tower is 15 seconds.

Question 56.

The shadow of a tower standing on a level ground is found to be 30 m longer when the sun's altitude is 30° than when it is 60°. Find the height of the tower.

Solution:

Let AB be the tower of height h.
Let $\mathrm{BC}=x$
In $\triangle \mathrm{ABC}$,

$$
\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ}
$$

$$
\Rightarrow \quad \frac{h}{x}=\sqrt{3}
$$

$$
\Rightarrow \quad \begin{array}{rl}
x & x \tag{i}\\
& \mathrm{AB}
\end{array}
$$

$$
\text { In } \triangle \mathrm{ABD}, \quad \frac{\mathrm{AB}}{\mathrm{BD}}=\tan 30^{\circ}
$$

$$
\Rightarrow \quad \frac{h}{x+30}=\frac{1}{\sqrt{3}}
$$

$$
\Rightarrow \quad h \sqrt{3}=x+30
$$

$$
\Rightarrow \quad h \sqrt{3}=\frac{h}{\sqrt{3}}+30
$$

$\Rightarrow \quad h \sqrt{3}=\frac{h+30 \sqrt{3}}{\sqrt{3}} \Rightarrow 3 h=h+30 \sqrt{3}$
$\Rightarrow \quad 2 h=30 \sqrt{3} \Rightarrow h=15 \sqrt{3} \mathrm{~m}$
[From (i)]

Hence, the height of the tower is $15 \sqrt{3} \mathrm{~m}$.

Question 57.

A man standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 metres away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree.

Solution:

Let h be the height of the tree AB .
Let $\mathrm{BC}=x$
In $\triangle \mathrm{ABC}$,

$$
\frac{\mathrm{AB}}{\mathrm{BC}}=\tan 60^{\circ}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{h}{x}=\sqrt{3} \\
\Rightarrow & x=\frac{h}{\sqrt{3}} \tag{i}
\end{array}
$$

In $\triangle \mathrm{ABD}$,

$$
\frac{\mathrm{AB}}{\mathrm{BD}}=\tan 30^{\circ}
$$

$\begin{array}{ll}\Rightarrow & \frac{h}{40+x}=\frac{1}{\sqrt{3}} \Rightarrow \\ \Rightarrow & h \sqrt{3}=40+\frac{h}{\sqrt{3}}\end{array}$
[Using (i)]
$\Rightarrow \quad 3 h=40 \sqrt{3}+h \Rightarrow 2 h=40 \sqrt{3} \Rightarrow h=20 \sqrt{3} \mathrm{~m}$
Hence, the height of the tree is $20 \sqrt{3} \mathrm{~m}$.

2010

Long Answer Type Questions [4 Marks]

Question 58.

From the top of a 7 m high building, the angle of elevation of the top of a tower is 60°
and the angle of depression of the foot of the tower is 30°. Find the height of the tower

Solution:

AB is a building of height 7 m and CD is a tower of height h.
Here,
$\mathrm{AB}=\mathrm{ED}=7 \mathrm{~m}$ and $\mathrm{CE}=h-7$
Let

$$
\mathrm{BD}=\mathrm{AE}=x
$$

In right $\triangle \mathrm{AED}$,
$\frac{\mathrm{AE}}{\mathrm{ED}}=\cot 30^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & \frac{x}{7}=\sqrt{3} \\
\Rightarrow & x=7 \sqrt{3} \mathrm{~m}
\end{array}
$$

In right $\triangle \mathrm{AEC}, \frac{\mathrm{CE}}{\mathrm{AE}}=\tan 60^{\circ} \Rightarrow \frac{\mathrm{CE}}{x}=\sqrt{3}$

$$
\begin{array}{ll}
\Rightarrow & \frac{h-7}{7 \sqrt{3}}=\sqrt{3} \Rightarrow h-7=7 \times 3[\text { From }(i)] \\
\Rightarrow & h-7=21 \Rightarrow h=28 \mathrm{~m}
\end{array}
$$

\therefore Height of the tower is 28 m .

Question 59.

The angle of elevation of a cloud from a point 60 m above a lake is 30° and the angle of depression of the reflection of the cloud in the lake is 60°. Find the height of the cloud from the surface of the lake.

Solution:

Let height of the cloud C from the lake be h. A is position of the point 60 m above the lake.
D is the reflection of the cloud in lake. Then, $\mathrm{FC}=\mathrm{FD}=h$
\Rightarrow

$$
\mathrm{CE}=h-60 \text { and } \mathrm{DE}=60+h
$$

In right $\triangle \mathrm{AEC}$,

$$
\frac{\mathrm{AE}}{\mathrm{EC}}=\cot 30^{\circ}
$$

$$
\Rightarrow
$$

In right $\triangle \mathrm{AED}$,
\Rightarrow
From (i) and (ii), we get

$$
\begin{aligned}
& & (h-60) \sqrt{3} & =\frac{h+60}{\sqrt{3}} \\
\Rightarrow & & 3 h-180 & =h+60 \\
\Rightarrow & & 2 h & =240 \Rightarrow h=120 \mathrm{~m}
\end{aligned}
$$

$\therefore \quad$ Height of the cloud above the lake is 120 m .

Question 60.

A man on the deck of a ship, 12 m above water level, observes that the angle of elevation of the top of a cliff is 60° and the angle of depression of the base of the cliff is 30°. Find the distance of the cliff from the ship and the height of the cliff.

Solution:

Let ED be the deck of the ship of height 12 m .
AC be the cliff of height $x+12$
$\angle \mathrm{AEB}=60^{\circ}, \angle \mathrm{CEB}=30^{\circ}$
Let distance between the cliff and the deck be y.
In $\triangle C B E$,

$$
\frac{\mathrm{CB}}{\mathrm{BE}}=\tan 30^{\circ} \Rightarrow \frac{12}{y}=\frac{1}{\sqrt{3}}
$$

$\Rightarrow \quad y=12 \sqrt{3}=12 \times 1.732=20.784 \mathrm{~m}$
In $\triangle \mathrm{ABE}$,

$$
\frac{\mathrm{AB}}{\mathrm{BE}}=\tan 60^{\circ} \Rightarrow \frac{x}{y}=\sqrt{3}
$$

$\Rightarrow \quad \frac{x}{12 \sqrt{3}}=\sqrt{3} \quad(\because y=12 \sqrt{3})$
$\Rightarrow \quad x=\sqrt{3} \times 12 \sqrt{3} \Rightarrow x=36 \mathrm{~m}$

Distance of the cliff from the ship is 20.784 m .
Height of the cliff $=x+12=36+12=48 \mathrm{~m}$.

Question 61.

A vertical pedestal stands on the ground and is surmounted by a vertical flagstaff of height 5 m . At a point on the ground, the angles of elevation of the bottom and the top of the flagstaff are 30° and 60° respectively. Find the height of the pedestal.

Solution:

Let height of pedestal $\mathrm{AB}=h \mathrm{~m}$.
$B C$ is vertical flagstaff of height 5 m .

	$\angle \mathrm{BOA}$	$=30^{\circ}, \angle \mathrm{COA}=60^{\circ}$
In right $\triangle \mathrm{BAO}$,	$\frac{\mathrm{OA}}{\mathrm{AB}}$	$=\cot 30^{\circ}$
\Rightarrow	OA	$=\sqrt{3} h$
In right $\triangle \mathrm{CAO}$,	$\frac{\mathrm{OA}}{\mathrm{AC}}=\cot 60^{\circ}$	
\Rightarrow	$\mathrm{OA}=\frac{h+5}{\sqrt{3}}$	
From (i) and $(i i)$, we get		

$$
\begin{array}{rlrl}
& & \sqrt{3} h & =\frac{h+5}{\sqrt{3}} \Rightarrow 3 h=h+5 \\
\Rightarrow & 2 h & =5 \Rightarrow h=2.5 \mathrm{~m}
\end{array}
$$

\therefore Height of the pedestal is 2.5 m .

Question 62.

From a window (9 m above the ground) of a house in a street, the angles of elevation and depression of the top and foot of another house on the opposite side of the street are 30° and 60° respectively. Find the height of the opposite house and the width of the street

Solution:

Let ED be the window of height 9 m and AC be house of height $x+9$. DC is the street of width y.
Here, $\angle \mathrm{AEB}=30^{\circ}$ and $\angle \mathrm{CEB}=60^{\circ}$
In $\triangle \mathrm{CBE}, \quad \frac{\mathrm{CB}}{\mathrm{BE}}=\tan 60^{\circ}$
$\Rightarrow \quad \frac{9}{y}=\sqrt{3}$
$\Rightarrow \quad y=\frac{9}{\sqrt{3}}=\frac{9}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$

$$
=\frac{9 \sqrt{3}}{3}=3 \sqrt{3} \mathrm{~m}
$$

In $\triangle \mathrm{ABE}, \frac{\mathrm{AB}}{\mathrm{BE}}=\tan 30^{\circ} \Rightarrow \frac{x}{y}=\frac{1}{\sqrt{3}}$
$\Rightarrow \quad \frac{x}{3 \sqrt{3}}=\frac{1}{\sqrt{3}}$
[From (i)]

Height of the house $=x+9=3+9=12 \mathrm{~m}$
Width of the street $=3 \sqrt{3}=3 \times 1.732=5.196 \mathrm{~m}$

