Chapter 10: Constructions
 Exercise 10.1(MCQ)

Question 1:

To divide a line segment $A B$ in the ratio 5: 7, first a ray $A X$ is drawn, so that $\angle B A X$ is an acute angle and then at equal distances points are marked on the ray $A X$ such that the minimum number of these points is
(a) 8
(b) 10
(c) 11
(d) 12

Solution:

(d) We know that to divide a line segment $A B$ in the ratio m : n, first draw a ray $A X$ which makes an acute angle $\angle B A X$, then marked $m+n$ points at equal distance.
Here,

$$
m=5, n=7
$$

So, minimum number of these points $=m+n=5+7=12$.

Question 2:

To divide a line segment $A B$ in the ratio 4: 7, a ray $A X$ is drawn first such that $\angle B A X$ is an acute angle and then points $A_{1} A_{2}, A_{3}, \ldots$ are located at equal distances on the ray $A Y$ and the point B is joined to
(a) A_{12}
(b) A_{11}
(c) A_{12}
(d) A_{9}

Solution:

(b) Here, minimum $4+7=11$ points are located at equal distances on the ray $A X$, and then B is joined to the last point is A_{11}

Question 3:

To divide a line segment $A B$ in the ratio 5: 6, draw a ray $A Y$ such that $\angle B A X$ is an acute angle, then draw a ray $B Y$ parallel to $A Y$ and the points $A_{1}, A_{2}, A_{3}, \ldots$ and B_{1}, B_{2}, B_{3}, \ldots are located to equal distances on ray $A Y$ and $B Y$, respectively. Then, the points joined are
(a) A_{5} and A_{6}
(b) A_{6} and B_{5}
(c) A_{4} and B_{5}
(d) A_{5} and B_{4}

Solution:

(a) Given a line segment $A B$ and we have to divide it in the ratio 5:6.

Steps of construction

1. Draw a ray $A X$ making an acute $\angle B A X$.
2. Draw a ray $B Y$ parallel to $A X$ by making $\angle A B Y$ equal to $\angle B A X$.
3. Now, locate the points $A_{1}, A_{2}, A_{3}, A_{4}$ and $A_{5}(m=5)$ on $A X$ and B_{1}, B_{2}, B_{3}, B_{4}, B_{5} and $B_{6}(n=6)$ such that all the points are at equal distance from each other.
4. Join $B_{6} A_{5}$. Let it intersect $A B$ at a point C.

Then, $A C: B C=5: 6$

Question 4:

To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{3}{7}$ of the corresponding sides of $\triangle A B C$, first, draw a ray $B X$ such that $\angle C B X$ is an acute angle and X lies on the opposite side of A concerning $B C$. Then, locate points $B_{1}, B_{2}, B_{3}, \ldots$ on $B X$ at equal distances and the next step is to join
(a) B_{10} to C
(b) B_{13} to C
(c) B_{7} to C
(d) B_{4} to C

Solution:

(c) Here, we locate points $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ and B_{7} on $B X$ at equal distance and in the next step join the last points is B_{7} to C.

Question 5:

To construct a triangle similar to a given $\triangle \mathrm{ABC}$ with its sides $\frac{8}{5}$ of the corresponding sides of $\triangle A B C$ draw a ray $B X$ such that $\angle C B X$ is an acute angle and X is on the opposite side of A concerning $B C$. The minimum number of points to be located at equal distances on ray $B X$ is
(a) 5
(b) 8
(c)13
(d) 3

Solution:
(b) To construct a triangle similar to a given triangle, with its sides $\frac{m}{n}$ of the corresponding sides of the given triangle the minimum number of points to be located at an equal distance is equal to the greater of m and n is $\frac{8}{5}$
Hence, $\frac{m}{n}=\frac{8}{5}$
So, the minimum number of point to be located at an equal distance on ray BX is 8 .

MCQ Questions for Class 10 Maths With Answers

Question 6:

To draw a pair of tangents to a circle that are inclined to each other at an angle of 60°, it is required to draw tangents at endpoints of those two radii of the circle, the angle between them should be
(a) 135°
(b) 90°
(c) 60°
(d) 120°

Solution:

(d) The angle between them should be 120° because in that case the figure formed by the intersection point of pair of a tangent, the two endpoints of those-two radii tangents are drawn) and the centre of the circle is a quadrilateral.
From the figure it is quadrilateral,
$\angle \mathrm{POQ}+\angle \mathrm{PRQ}=180^{\circ}\left[\because\right.$ sum of opposite angles are $\left.180^{\circ}\right]$
$60^{\circ}+\theta=180^{\circ}$
$\theta=120$
Hence, the required angle between them is 120°.

