Chapter 10: Constructions Exercise 10.1(MCQ)

Question 1:

To divide a line segment AB in the ratio 5: 7, first a ray AX is drawn, so that \angle BAX is an acute angle and then at equal distances points are marked on the ray AX such that the minimum number of these points is

(a) 8

(c) 11 (d) 12

Solution:

(d) We know that to divide a line segment AB in the ratio m: n, first draw a ray AX which makes an acute angle $\angle BAX$, then marked m + n points at equal distance. Here, m = 5, n = 7

So, minimum number of these points = m+n = 5 + 7 = 12.

(b) 10

Question 2:

To divide a line segment AB in the ratio 4: 7, a ray AX is drawn first such that \angle BAX is an acute angle and then points A₁ A₂, A₃,... are located at equal distances on the ray AY and the point B is joined to

(a) A_{12} (b) A_{11} (c) A_{12} (d) A_{9} Solution:

(b) Here, minimum 4+7 = 11 points are located at equal distances on the ray AX, and then B is joined to the last point is A₁₁

Question 3:

To divide a line segment AB in the ratio 5: 6, draw a ray AY such that \angle BAX is an acute angle, then draw a ray BY parallel to AY and the points A₁, A₂, A₃,... and B₁, B₂, B₃,... are located to equal distances on ray AY and BY, respectively. Then, the points joined are

(a) A_5 and A_6 (b) A_6 and B_5 (c) A_4 and B_5 (d) A_5 and B_4 **Solution:**

(a) Given a line segment AB and we have to divide it in the ratio 5:6.

Steps of construction

- 1. Draw a ray AX making an acute $\angle BAX$.
- 2. Draw a ray BY parallel to AX by making $\angle ABY$ equal to $\angle BAX$.
- 3. Now, locate the points A_1 , A_2 , A_3 , A_4 and A_5 (m= 5) on AX and B_1 , B_2 , B_3 , B_4 , B_5 and B_6 (n = 6) such that all the points are at equal distance from each other.
- 4. Join B_6A_5 . Let it intersect AB at a point C. Then, AC:BC = 5:6

Question 4:

To construct a triangle similar to a given $\triangle ABC$ with its sides $\overline{7}$ of the corresponding sides of $\triangle ABC$, first, draw a ray BX such that $\angle CBX$ is an acute angle and X lies on the opposite side of A concerning BC. Then, locate points B₁, B₂, B₃,... on BX at equal distances and the next step is to join

(c) B_7 to C (d)B₄to C (a) B_{10} to C (b) B_{13} to C Solution:

(c) Here, we locate points B₁, B₂, B₃, B₄, B₅, B₆ and B₇ on BX at equal distance and in the next step join the last points is B_7 to C.

Question 5:

To construct a triangle similar to a given $\triangle ABC$ with its sides $\overline{5}$ of the corresponding sides of $\triangle ABC$ draw a ray BX such that $\angle CBX$ is an acute angle and X is on the opposite side of A concerning BC. The minimum number of points to be located at equal distances on ray BX is (a) 5 (b) 8 (c)13 (d) 3

Solution:

(b) To construct a triangle similar to a given triangle, with its sides $\frac{m}{m}$ of the corresponding sides of the given triangle the minimum number of points to be located at an equal distance is equal to the greater of m and n is $\frac{8}{r}$

Hence, $\frac{m}{n} = \frac{8}{5}$

So, the minimum number of point to be located at an equal distance on ray BX is 8.

MCQ Questions for Class 10 Maths With Answers

Question 6:

To draw a pair of tangents to a circle that are inclined to each other at an angle of 60°, it is required to draw tangents at endpoints of those two radii of the circle, the angle between them should be

(a) 135° (b) 90° (c) 60° (d) 120°

Solution:

(d) The angle between them should be 120° because in that case the figure formed by the intersection point of pair of a tangent, the two endpoints of those-two radii tangents are drawn) and the centre of the circle is a quadrilateral.

From the figure it is guadrilateral,

 $\angle POQ + \angle PRQ = 180^{\circ}$ [: sum of opposite angles are 180°] $60^{\circ} + \theta = 180^{\circ}$ θ=120 Hence, the required angle between them is 120°.