Chapter 9: Appplication of Trigonometry

Exercise - 9.1

Question 1: A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°. (see fig. 9.11)

Fig. 9.11

Answer: Length of the rope is 20 m and $\angle A C B=30^{\circ}$.
$\mathrm{AC}=20 \mathrm{~m}$ and $\angle \mathrm{C}=30^{\circ}$ [Given]
To Find: Height of the pole
Let $A B$ be the vertical pole
In the right $\triangle A B C$, using sine formula
$\sin 30^{\circ}=\frac{A B}{A C}$
Or, $\frac{1}{2}=\frac{A B}{20}$
Or, $A B=10$
Therefore, the height of the pole is 10 m .

Question 2: A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the tree's foot to the point where the top touches the ground is eight m . Find the height of the tree.

Solution: Let AC be the broken part of the tree. $\angle \mathrm{C}=30^{\circ}$ and $\mathrm{BC}=8 \mathrm{~m}$
To Find: Height of the tree, which is $A B$

So, the total height of the tree is the sum of $A B$ and $A C$, i.e. $A B+A C$ In the right $\triangle A B C$,
$\cos 30^{\circ}=\frac{A C}{B C}$
We know that, $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\frac{\sqrt{3}}{2}=\frac{8}{A C}$
Or, $A C=\frac{16}{\sqrt{3}}$
Also, $\tan 30^{\circ}=A B / B C$
$\frac{1}{\sqrt{3}}=\frac{A B}{8}$
$A B=\frac{8}{\sqrt{3}}$.
Therefore, total height of the tree $=A B+A C$
$=\frac{16}{\sqrt{3}}+\frac{8}{\sqrt{3}}=\frac{24}{\sqrt{3}}=\frac{8}{\sqrt{3}} \mathrm{~m}$.

Question 3: A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a decline whose top is at the height of 1.5 m and is inclined at an angle of 30° to the ground, whereas for elder children, she wants to have a steep slide at the height of 3 m , and inclined at an angle of 60° to the ground. What should be the length of the decline in each case?

Answer: As per the contractor's plan,

Ages	Height of Slide	Inclined Angle
Below 5years	1.5 m	30 degrees
Above 5years	3 m	60 degrees

In right $\triangle \mathrm{ABC}$,
$\sin 30^{\circ}=\frac{A B}{A C}$
Or, $\frac{1}{2}=\frac{1.5}{A C}$
or, $A C=3$
Also, in the right $\triangle P Q R$,
$\sin 60^{\circ}=\frac{P Q}{P R}$
Or, $\frac{\sqrt{3}}{2}=\frac{3}{P R}$
Or, $\mathrm{PR}=2 \sqrt{3}$
Hence, the length of the slide for below $5=3 \mathrm{~m}$ and length of the slide for elders children $=2 \sqrt{ } 3 \mathrm{~m}$

Question 4: The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the tower's foot, is 30°. Find the height of the tower.

Answer: Let $A B$ be the height of the tower, C be the point of elevation which is 30 m away from the building's foot.

In right $A B C \tan 30^{\circ}=\frac{A B}{B C}$
Or, $\frac{1}{\sqrt{3}}=\frac{A B}{30}$
Or, $A B=10 \sqrt{ } 3$
Thus, the height of the tower is $10 \sqrt{ } 3 \mathrm{~m}$.

Question 5: A kite is flying at the height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination
of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

Answer: Let $\mathrm{BC}=60 \mathrm{~m}$ and A is the point where a string of the kite is tied.

From the above figure,
$\sin 60^{\circ}=\frac{B C}{A C}$
or, $\frac{\sqrt{ } 3}{2}=\frac{60}{A C}$
Or, $A C=40 \sqrt{3} \mathrm{~m}$
Thus, the length of the string from the ground is $40 \sqrt{ } 3 \mathrm{~m}$.

Question 6: A 1.5 m tall boy is standing at some distance from a 30 m tall building. The elevation angle from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building.

Answer:

From the figure, $X Y=C D$ and height of the building $=A Z=30 \mathrm{~m}$.
$A B=A Z-B Z=(30-1.5) m=28.5 m$
In right $\triangle \mathrm{ABD}, \tan 30^{\circ}=\frac{A B}{B D}$
Or, $\frac{1}{\sqrt{3}}=\frac{28.5}{B D}$
Or, $B D=28.5 \sqrt{ } 3 \mathrm{~m}$
Again, in right $\triangle A B C$,
$\tan 60^{\circ}=\frac{A B}{B C}$
or, $\sqrt{ } 3=\frac{28.5}{B C}$
or, $B C=\frac{28.5}{\sqrt{3}}=\frac{28.5 \sqrt{3}}{3}$
Therefore, the length of $B C$ is $\frac{28.5 \sqrt{3}}{3} \mathrm{~m}$.
$X Y=C D=B D-B C$
$=\left(28.5 \sqrt{ } 3-\frac{28.5 \sqrt{3}}{3}\right)$
$=28.5 \sqrt{ } 3\left(1-\frac{1}{3}\right)$
$=28.5 \sqrt{ } 3 \times \frac{2}{3}=\frac{57}{\sqrt{3}} \mathrm{~m}$.
Thus, the distance boy walked towards the building is $\frac{57}{\sqrt{3}} \mathrm{~m}$.

Question 7: From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Answer: Let BC=20 m
D is the point where the elevation is taken.
Height of transmission tower $=A B=A C-B C$

From the figure, in the right $\triangle B C D$,
$\tan 45^{\circ}=\frac{B C}{C D}$

Or, $1=\frac{20}{C D}$
or, $C D=20$
Again, in the right $\triangle A C D$,
or, $\tan 60^{\circ}=\frac{A C}{C D}$
Or. $\sqrt{ } 3=\frac{A C}{20}$
or, $A C=20 \sqrt{3}$
Now, $A B=A C-B C=(20 \sqrt{ } 3-20)=20(\sqrt{3}-1)$
Height of the tower $=20(\sqrt{3}-1) \mathrm{m}$.

Question 8: A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60°, and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

Answer: Let $A B$ be the height of the statue.
D is the point on the ground from where the elevation is taken.
To Find: Height of pedestal $=B C=A C-A B$

From the figure, in right triangle $B C D$,
$\tan 45^{\circ}=\frac{B C}{C D}$
or, $1=\frac{B C}{C D}$
or, $B C=C D$

Again, in the right $\triangle A C D$,
$\tan 60^{\circ}=\frac{A C}{A D}$
or, $\sqrt{ } 3=\frac{A B+B C}{C D}$
or, $\sqrt{ } 3 C D=1.6+B C$
or, $\sqrt{ } 3 B C=1.6+B C$
or, $\sqrt{ } 3 B C-B C=1.6$
or, $B C(\sqrt{ } 3-1)=1.6$
or, $B C=\frac{1.6}{\sqrt{3}-1} m$
$B C=0.8(\sqrt{3}+1)$
Thus, the height of the pedestal is $0.8(\sqrt{3}+1) \mathrm{m}$.

Question 9. The angle of elevation of the top of a building from the foot of the tower is 30°, and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.

Answer:

Let $C D$ be the height of the tower. $A B$ be the height of the building. $B C$ be the distance between the foot of the building and the tower. The elevation is 30 degree and 60 degrees from the tower and the building respectively.

In right $\triangle B C D$,
$\tan 60^{\circ}=\frac{C D}{B C}$
or, $\sqrt{ } 3=\frac{50}{B C}$
or, $B C=\frac{50}{\sqrt{3}}$
Again,
In right $\triangle A B C$,
$\tan 30^{\circ}=\frac{A B}{B C}$
or, $\frac{1}{\sqrt{ } 3}=\frac{A B}{B C}$

Use result obtained in equation (1)
$A B=\frac{50}{3}$
Thus, the height of the building is $\frac{50}{3} \mathrm{~m}$.

Question 10. Two poles of equal heights are standing opposite each other on either side of the road, 80 m wide. From a point between them on the road, the elevation angles of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the bars.

Answer: Let $A B$ and $C D$ be the poles of equal height.

As per above figure, $A B=C D$,
$O B+O D=80 \mathrm{~m}$
Now,
In right $\triangle C D O$,
$\tan 30^{\circ}=\frac{C D}{O D}$
or, $\frac{1}{\sqrt{3}}=\frac{C D}{O D}$
Or, CD $=O D / \sqrt{ } 3$
Again, in right $\triangle \mathrm{ABO}$,
$\tan 60^{\circ}=\frac{A B}{O B}$
or, $\sqrt{ } 3=\frac{A B}{(80-O D)}$
or, $\mathrm{AB}=\frac{\sqrt{3}}{(80-O D)}$
$\mathrm{AB}=\mathrm{CD}$ (Given)
$\sqrt{3}(80-O D)=\frac{O D}{\sqrt{3}}$ (Using equation (1))
or, $3(80-O D)=O D$
or, $240-3$ OD = OD
or, 4 OD = 240
$O D=60$
Putting the value of OD in equation (1)
$C D=\frac{O D}{\sqrt{3}}$
$C D=\frac{60}{\sqrt{3}}$
$C D=\frac{20}{\sqrt{3}} \mathrm{~m}$
Also,
$O B+O D=80 \mathrm{~m}$
or, $O B=(80-60) \mathrm{m}=20 \mathrm{~m}$
Thus, the height of the poles are $\frac{20}{\sqrt{3}} \mathrm{~m}$, and distance from the point of elevation are 20 m and

60 m respectively.
Question 11. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point $\mathbf{2 0} \mathrm{m}$ away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see Fig. 9.12). Find the height of the tower and the width of the canal.

Answer: Given, AB is the height of the tower and $\mathrm{DC}=20 \mathrm{~m}$
In right $\triangle A B D$,
$\tan 30^{\circ}=\frac{A B}{B D}$
or, $\frac{1}{\sqrt{3}}=\frac{A B}{20+B C}$
$\mathrm{AB}=\frac{20+B C}{\sqrt{3}}$
Again,
In right $\triangle A B C$,
$\tan 60^{\circ}=\frac{A B}{B C}$
$\sqrt{ } 3=\frac{A B}{B C}$
$A B=\sqrt{ } 3 B C$
From equation (i) and (ii)
$\sqrt{3} B C=\frac{20+B C}{\sqrt{3}}$
$3 B C=20+B C$
$2 B C=20$
$B C=10$
Putting the value of $B C$ in equation (ii)
$A B=10 \sqrt{ } 3$
This implies, the height of the tower is $10 \sqrt{ } 3 \mathrm{~m}$, and the width of the canal is 10 m .

Question 12. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60°, and the angle of depression of its foot is 45°.
Determine the height of the tower.

Solution:

Let $A B$ be the building of height 7 m and EC be the height of the tower.
$E C=D E+C D$
Also, $C D=A B=7 \mathrm{~m}$. and $B C=A D$

In right $\triangle A B C$,
$\tan 45^{\circ}=\frac{A B}{B C}$
OR, $1=\frac{7}{B C}$
or, $\mathrm{BC}=7$
Since $B C=A D$, So $A D=7$

Again, from right triangle $A D E$,
$\tan 60^{\circ}=\frac{D E}{A D}$
or, $\sqrt{ } 3=\frac{D E}{7}$
or, $D E=7 \sqrt{ } 3 \mathrm{~m}$
Now: $E C=D E+C D=(7 \sqrt{ } 3+7)=7(\sqrt{ } 3+1)$
Therefore, Height of the tower is $7(\sqrt{ } 3+1) \mathrm{m}$.
13. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

Answer: 30° and 45° are the angles of depression from the lighthouse.

From right triangle $A B C$,
$\tan 45^{\circ}=\frac{A B}{B C}$
or, $1=\frac{75}{B C}$
or, $B C=75 \mathrm{~m}$
Now, from right triangle ABD,
$\tan 30^{\circ}=\frac{A B}{B D}$
or, $\frac{1}{\sqrt{3}}=\frac{75}{B D}$
$B D=75 \sqrt{ } 3$
Now, $C D=B D-B C=(75 \sqrt{3}-75)=75(\sqrt{3}-1)$
Hence, the distance between the two ships is $75(\sqrt{3}-1) \mathrm{m}$.

Question 14: A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at the height of 88.2 m from the ground. The angle of elevation of the balloon from the girl's eyes at any instant is 60°. After some time, the angle of elevation reduces to 30° (see Fig. 9.13). Find the distance travelled by the balloon during the interval.

Fig. 9.13

Answer:

In the right $\triangle \mathrm{BEC}$,
$\tan 30^{\circ}=\frac{B E}{C E}$
or, $\frac{1}{\sqrt{3}}=\frac{87}{C E}$
or, $C E=87 \sqrt{ } 3$
Now, in the right $\triangle \mathrm{ADC}$,
$\tan 60^{\circ}=\frac{A D}{C D}$
or, $\sqrt{ } 3=\frac{87}{C D}$
or, $C D=\frac{87}{\sqrt{3}}=29 \sqrt{ } 3$.
$D E=C E-C D=(87 \sqrt{ } 3-29 \sqrt{ } 3) \quad[F r o m(1)$ and (2)]
$=29 \sqrt{ } 3(3-1)$
$=58 \sqrt{ } 3$
Distance travelled by the balloon $=58 \sqrt{ } 3 \mathrm{~m}$.

Question A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the rise of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.

Answer:

In the right $\triangle \mathrm{ABC}$,
$\tan 60^{\circ}=\frac{A B}{B C}$
or, $\sqrt{ } 3=\frac{A B}{B C}$
or, $\mathrm{BC}=\frac{A B}{\sqrt{3}}$
or, $A B=\sqrt{3} B C$
Now, in right $\triangle A B D$,
$\tan 30^{\circ}=\frac{A B}{B D}=\frac{1}{\sqrt{3}}$
or, $\mathrm{AB}=\frac{B D}{\sqrt{3}}$
from eq. (1) and (2) we have
$\sqrt{ } 3 B C=\frac{B D}{\sqrt{3}}$
or, $3 \mathrm{BC}=\mathrm{BD}$
or, $3 B C=B C+C D$
or, $2 B C=C D$
or, or $\mathrm{BC}=\frac{C D}{2}$
Here, distance of $\mathrm{BC}=\frac{C D}{2}$. Thus, the time taken is also half.
Time is taken by car to travel distance $C D=6$ secs.
Hence, time taken by car to travel $B C=\frac{6}{2}=3 \mathrm{sec}$.

Question 16: The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the tower base and in the same straight line with it are complementary. Prove that the height of the tower is $\mathbf{6 ~ \mathbf { ~ m }}$.

Answer:

In the right $\triangle A B C$,
$\tan \mathrm{x}=\frac{A B}{B C}$
or, $\tan \mathrm{X}=\frac{A B}{4}$
or, $A B=4 \tan x$
Again, from right $\triangle A B D$,
$\tan \left(90^{\circ}-\mathrm{x}\right)==\frac{A B}{B D}$
or, $\cot \mathrm{x}==\frac{A B}{9}$
or, $A B=9 \cot x$
Now, multiplying equation (1) and (2)
$A B^{2}=9 \cot x \times 4 \tan x$
or, $A B^{2}=36$
or, $A B= \pm 6$
Since height cannot be negative, therefore, the height of the tower is 6 m .

