CHapter 7 Triangles

Q.1: $A B C D$ is a quadrilateral in which $A D=B C$ and $\angle D A B=\angle C B A$. Prove that
(i) $\triangle A B D \cong \triangle B A C$
(ii) $B D=A C$
(iii) $\angle A B D=\angle B A C$.

Solution:
As given in the question,
$\angle D A B=\angle C B A$ and $A D=B C$.
(i) $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BAC}$ are similar by SAS congruency as
$\mathrm{AB}=\mathrm{BA}$ (common arm)
$\angle \mathrm{DAB}=\angle \mathrm{CBA}$ and $\mathrm{AD}=\mathrm{BC}$ (given)
So, triangles $A B D$ and $B A C$ are similar
i.e. $\triangle A B D \cong \triangle B A C$. (Hence proved).
(ii) As it is already proved,
$\triangle \mathrm{ABD} \cong \triangle \mathrm{BAC}$
So,
BD = AC (by CPCT)
(iii) Since $\triangle A B D \cong \triangle B A C$

So, the angles,
$\angle A B D=\angle B A C$ (by CPCT).
Q.2: $A D$ and $B C$ are equal perpendiculars to a line segment $A B$. Show that $C D$ bisects $A B$.

Solution:

Given, $A D$ and $B C$ are two equal perpendiculars to $A B$.
To prove: $C D$ is the bisector of $A B$

Proof:

Triangles $\triangle A O D$ and $\triangle B O C$ are similar by AAS congruency
Since:
(i) $\angle \mathrm{A}=\angle \mathrm{B}$ (perpendicular angles)
(ii) $\mathrm{AD}=\mathrm{BC}$ (given)
(iii) $\angle \mathrm{AOD}=\angle \mathrm{BOC}$ (vertically opposite angles)
$\therefore \triangle \mathrm{AOD} \cong \triangle \mathrm{BOC}$.
So, AO = OB (by CPCT).
Thus, $C D$ bisects $A B$ (Hence proved).
Q.3: Line I is the bisector of angle $\angle A$ and B is any point on I. $B P$ and $B Q$ are perpendiculars from B to the arms of $\angle A$. Show that:
(i) $\triangle \mathrm{APB} \cong \triangle A Q B$
(ii) $B P=B Q$ or B is equidistant from the arms of $\angle A$.

Solution:
It is given that the line " l " is the bisector of angle $\angle \mathrm{A}$ and the line segments $B P$ and $B Q$ are perpendiculars drawn from I.
(i) $\triangle A P B$ and $\triangle A Q B$ are similar by AAS congruency because;
$\angle \mathrm{P}=\angle \mathrm{Q}$ (both are right angles)
$A B=A B$ (common arm)
$\angle B A P=\angle B A Q$ (As line I is the bisector of angle A)
So, $\triangle A P B \cong \triangle A Q B$.
(ii) By the rule of $C P C T, B P=B Q$. So, we can say point B is equidistant from the arms of $\angle A$.
Q.4: $A B$ is a line segment and P is its mid-point. D and E are points on the same side of $A B$ such that $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$. Show that
(i) $\triangle \mathrm{DAP} \cong \triangle E B P$
(ii) $A D=B E$

Solution:
Given, P is the mid-point of line segment AB .
Also, $\angle B A D=\angle A B E$ and $\angle E P A=\angle D P B$
(i) Given, $\angle E P A=\angle D P B$

Now, add $\angle D P E$ on both sides,
$\angle E P A+\angle D P E=\angle D P B+\angle D P E$
This implies that angles DPA and EPB are equal
i.e. $\angle D P A=\angle E P B$

Now, consider the triangles DAP and EBP.
$\angle D P A=\angle E P B$
$A P=B P$ (Since P is the mid-point of the line segment $A B$)
$\angle B A D=\angle A B E$ (given)
So, by ASA congruency criterion,
$\Delta \mathrm{DAP} \cong \triangle \mathrm{EBP}$.
(ii) By the rule of CPCT,
$A D=B E$
Q.5: In right triangle $A B C$, right-angled at C, M is the mid-point of hypotenuse $A B$. C is joined to M and produced to a point D such that $D M=C M$. Point D is joined to point B (see the figure). Show that:
(i) $\triangle A M C \cong \triangle B M D$
(ii) $\angle D B C$ is a right angle.
(iii) $\triangle D B C \cong \triangle A C B$
(iv) $C M=1 / 2 A B$

Solution:
It is given that M is the mid-point of the line segment $A B, \angle C=90^{\circ}$, and $D M=C M$
(i) Consider the triangles $\triangle \mathrm{AMC}$ and $\triangle \mathrm{BMD}$:
$A M=B M$ (Since M is the mid-point)
CM = DM (Given)
$\angle \mathrm{CMA}=\angle \mathrm{DMB}$ (Vertically opposite angles)
So, by SAS congruency criterion, $\triangle A M C \cong \triangle B M D$.
(ii) $\angle \mathrm{ACM}=\angle \mathrm{BDM}$ (by CPCT)
$\therefore \mathrm{AC} \| \mathrm{BD}$ as alternate interior angles are equal.
Now, $\angle A C B+\angle D B C=180^{\circ}$ (Since they are co-interiors angles)
$\Rightarrow 90^{\circ}+\angle B=180^{\circ}$
$\therefore \angle \mathrm{DBC}=90^{\circ}$
(iii) In $\triangle D B C$ and $\triangle A C B$,
$B C=C B$ (Common side)
$\angle A C B=\angle D B C$ (Both are right angles)
DB = AC (by CPCT)
So, $\triangle \mathrm{DBC} \cong \triangle A C B$ by SAS congruency.
(iv) $D C=A B$ (Since $\triangle D B C \cong \triangle A C B$)
$\Rightarrow D M=C M=A M=B M$ (Since M the is mid-point)
So, $D M+C M=B M+A M$
Hence, $\mathrm{CM}+\mathrm{CM}=\mathrm{AB}$
$\Rightarrow C M=(1 / 2) A B$
Q.6: $A B C$ is an isosceles triangle in which altitudes $B E$ and CF are drawn to equal sides $A C$ and $A B$ respectively. Show that these altitudes are equal.

Solution:
Given:
(i) BE and CF are altitudes.
(ii) $A C=A B$

To prove:
$B E=C F$
Proof:
Triangles $\triangle A E B$ and $\triangle A F C$ are similar by AAS congruency, since;
$\angle \mathrm{A}=\angle \mathrm{A}$ (common arm)
$\angle A E B=\angle A F C$ (both are right angles)
$\mathrm{AB}=\mathrm{AC}$ (Given)
$\therefore \triangle \mathrm{AEB} \cong \triangle \mathrm{AFC}$
and $\mathrm{BE}=\mathrm{CF}$ (by CPCT).
Q.7: $\triangle A B C$ is an isosceles triangle in which $A B=A C$. Side $B A$ is produced to D such that $A D=A B$. Show that $\angle B C D$ is a right angle.

Solution:
Given, $A B=A C$ and $A D=A B$

To prove: $\angle \mathrm{BCD}$ is a right angle.
Proof:
Consider $\triangle A B C$,
$A B=A C$ (Given)
Also, $\angle \mathrm{ACB}=\angle \mathrm{ABC}$ (Angles opposite to equal sides)
Now, consider $\triangle A C D$,
$A D=A C$
Also, $\angle A D C=\angle A C D$ (Angles opposite to equal sides)
Now,
In $\triangle \mathrm{ABC}$,
$\angle \mathrm{CAB}+\angle \mathrm{ACB}+\angle \mathrm{ABC}=180^{\circ}$
So, $\angle C A B+2 \angle A C B=180^{\circ}$
$\Rightarrow \angle C A B=180^{\circ}-2 \angle A C B-$ (i)
Similarly in $\triangle A D C$,
$\angle C A D=180^{\circ}-2 \angle A C D-$ (ii)
Also,
$\angle C A B+\angle C A D=180^{\circ}(B D$ is a straight line. $)$
Adding (i) and (ii) we get,
$\angle C A B+\angle C A D=180^{\circ}-2 \angle A C B+180^{\circ}-2 \angle A C D$
$\Rightarrow 180^{\circ}=360^{\circ}-2 \angle A C B-2 \angle A C D$
$\Rightarrow 2(\angle A C B+\angle A C D)=180^{\circ}$
$\Rightarrow \angle B C D=90^{\circ}$
Q.8: $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of $B C$ (see the figure). If $A D$ is extended to intersect $B C$ at P, show that
(i) $\triangle A B D \cong \triangle A C D$
(ii) $\triangle A B P \cong \triangle A C P$
(iii) AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) AP is the perpendicular bisector of BC.

Solution:

In the above question, it is given that $\triangle A B C$ and $\triangle D B C$ are two isosceles triangles.
(i) $\triangle A B D$ and $\triangle A C D$ are similar by SSS congruency because:
$A D=A D$ (It is the common arm)
$A B=A C$ (Since $\triangle A B C$ is isosceles)
$B D=C D$ (Since $\triangle D B C$ is isosceles)
$\therefore \triangle A B D \cong \triangle A C D$.
(ii) $\triangle A B P$ and $\triangle A C P$ are similar as:
$\mathrm{AP}=\mathrm{AP}$ (common side)
$\angle P A B=\angle P A C($ by $C P C T$ since $\triangle A B D \cong \triangle A C D)$
$A B=A C$ (Since $\triangle A B C$ is isosceles)
So, $\triangle A B P \cong \triangle A C P$ by SAS congruency.
(iii) $\angle P A B=\angle P A C$ by $C P C T$ as $\triangle A B D \cong \triangle A C D$.

AP bisects $\angle A$.
Also, $\triangle \mathrm{BPD}$ and $\triangle \mathrm{CPD}$ are similar by SSS congruency as
$\mathrm{PD}=\mathrm{PD}$ (It is the common side)
$B D=C D$ (Since $\triangle D B C$ is isosceles.)
$B P=C P($ by $C P C T$ as $\triangle A B P \cong \triangle A C P)$
So, $\triangle \mathrm{BPD} \cong \triangle \mathrm{CPD}$.
Thus, $\angle \mathrm{BDP}=\angle \mathrm{CDP}$ by CPCT
Now by comparing equation (1) and (2) it can be said that AP bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) $\angle \mathrm{BPD}=\angle \mathrm{CPD}$ (by CPCT as $\triangle \mathrm{BPD} \cong \triangle \mathrm{CPD}$)
and $\mathrm{BP}=\mathrm{CP}-(1)$
also,
$\angle B P D+\angle C P D=180^{\circ}$ (Since $B C$ is a straight line.)
$\Rightarrow 2 \angle \mathrm{BPD}=180^{\circ}$
$\Rightarrow \angle \mathrm{BPD}=90^{\circ}$-(2)
Now, from equations (1) and (2), it can be said that
$A P$ is the perpendicular bisector of $B C$.
Q.9: Two sides $A B$ and $B C$ and median $A M$ of one triangle $A B C$ are respectively equal to sides $P Q$ and $Q R$ and median $P N$ of $\triangle P Q R$ (see the figure). Show that:
(i) $\triangle A B M \cong \triangle P Q N$
(ii) $\triangle A B C \cong \triangle P Q R$

Solution:
Given;
$A B=P Q$,
$B C=Q R$ and
$A M=P N$
(i) $1 / 2 \mathrm{BC}=\mathrm{BM}$ and $1 / 2 \mathrm{QR}=\mathrm{QN}$ (Since AM and PN are medians)

Also, BC = QR
So, $1 / 2 B C=1 / 2 Q R$
$\Rightarrow B M=Q N$
In $\triangle A B M$ and $\triangle P Q N$,
$A M=P N$ and $A B=P Q$ (Given)
$\mathrm{BM}=\mathrm{QN}$ (Already proved)
$\therefore \triangle \mathrm{ABM} \cong \triangle \mathrm{PQN}$ by SSS congruency.
(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$A B=P Q$ and $B C=Q R$ (Given)
$\angle A B C=\angle P Q R$ (by CPCT)
So, $\triangle \mathrm{ABC} \cong \triangle P Q R$ by SAS congruency.

Q.10: In the Figure, $P R>P Q$ and $P S$ bisect $\angle Q P R$. Prove that $\angle P S R>\angle P S Q$.

Solution:
Given, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$
To prove: $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$
Proof:
$\angle \mathrm{QPS}=\angle \mathrm{RPS}-(1)(\mathrm{PS}$ bisects $\angle \mathrm{QPR})$
$\angle P Q R>\angle P R Q-(2)($ Since $P R>P Q$ as angle opposite to the larger side is always larger)
$\angle \mathrm{PSR}=\angle \mathrm{PQR}+\angle \mathrm{QPS}-(3)$ (Since the exterior angle of a triangle equals the sum of opposite interior angles)
$\angle \mathrm{PSQ}=\angle \mathrm{PRQ}+\angle \mathrm{RPS}-(4)$ (As the exterior angle of a triangle equals the sum of opposite interior angles)

By adding (1) and (2)
$\angle P Q R+\angle Q P S>\angle P R Q+\angle R P S$
Now, from (1), (2), (3) and (4), we get
$\angle \mathrm{PSR}>\angle \mathrm{PSQ}$

