Chapter 2: Polynomials

1. Give an example of a monomial and a binomial having degrees as 82 and 99 , respectively.

Solution: An example of a monomial having a degree of $82=x^{82}$
An example of a binomial having a degree of $99=x^{99}+x$
2. Compute the value of $9 x^{2}+4 y^{2}$ if $x y=6$ and $3 x+2 y=12$.

Solution: Consider the equation $3 x+2 y=12$
Now, square both sides:
$(3 x+2 y)^{2}=12^{2}$
or, $9 x^{2}+12 x y+4 y^{2}=144$
or, $9 x^{2}+4 y^{2}=144-12 x y$
From the questions, $X Y=6$
So, $9 x^{2}+4 y^{2}=144-72$
Thus, the value of $9 x^{2}+4 y^{2}=72$
3. Find the value of the polynomial $5 x-4 x^{2}+3$ at $x=2$ and $x=-1$

Solution: Let the polynomial be $f(x)=5 x-4 x^{2}+3$
Now, for $x=2$,
$f(2)=5(2)-4(2)^{2}+3$
or, $f(2)=10-16+3=-3$
Or, the value of the polynomial $5 x-4 x^{2}+3$ at $x=2$ is -3 .
Similarly, for $x=-1$,
$f(-1)=5(-1)-4(-1)^{2}+3$
or, $\mathrm{f}(-1)=-5-4+3=-6$
The value of the polynomial $5 x-4 x^{2}+3$ at $x=-1$ is -6 .
4. Calculate the perimeter of a rectangle whose area is $25 x^{2}-35 x+12$.

Solution: Given, the area of rectangle $=25 x^{2}-35 x+12$
We know, area of rectangle $=$ length \times breadth
So, by factoring $25 x^{2}-35 x+12$, the length and breadth can be obtained.
$25 x^{2}-35 x+12=25 x^{2}-15 x-20 x+12$
Or, $25 x^{2}-35 x+12=5 x(5 x-3)-4(5 x-3)$
or, $25 x^{2}-35 x+12=(5 x-3)(5 x-4)$
So, the length and breadth are $(5 x-3)(5 x-4)$.
Now, perimeter $=2$ (length + breadth $)$
So, perimeter of the rectangle $=2[(5 x-3)+(5 x-4)]$
$=2(5 x-3+5 x-4)=2(10 x-7)=20 x-14$
So, the perimeter $=20 x-14$
5. Find the value of $x^{3}+y^{3}+z^{3}-3 x y z$ if $x^{2}+y^{2}+z^{2}=83$ and $x+y+z=15$

Solution: Consider the equation $x+y+z=15$
From algebraic identities, we know that $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
So, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+x z)$

From the question, $x^{2}+y^{2}+z^{2}=83$ and $x+y+z=15$
So, $15^{2}=83+2(x y+y z+x z)$
or, $225-83=2(x y+y z+x z)$
Or, $x y+y z+x z=142 / 2=71$
Using algebraic identity $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$, $x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-(x y+y z+x z)\right)$
Now, $x+y+z=15, x^{2}+y^{2}+z^{2}=83$ and $x y+y z+x z=71$
So, $x^{3}+y^{3}+z^{3}-3 x y z=15(83-71)$
or, $x^{3}+y^{3}+z^{3}-3 x y z=15 \times 12$
Or, $x^{3}+y^{3}+z^{3}-3 x y z=180$
6. Without actually Calculating the cubes, find the value of $(-12)^{3}+(7)^{3}+(5)^{3}$

Solution: Using $a^{3}+b^{3}+c^{3}=3 a b c$,
if $a+b+c=0$
$(-12)^{3}+(7)^{3}+(5)^{3}=3(-12)(7)(5)=1260$, as $-12+7+5=-12+12=0$
7. Is the following expressions are polynomials in one variable? State your reasons for both yes and no conditions.
(i) $4 x^{2}-3 x+7$
(ii) $3 \sqrt{t}+t \sqrt{2}$

Solution: (i) $4 x^{2}-3 x+7$, we can observe that in the given polynomial, we have x as the only variable and the powers of x in each term are a whole number. Hence, we can conclude that $4 x^{2}-3 x+7$ is a polynomial with one variable.
(ii) $3 \sqrt{t}+\mathrm{t}$, we can observe that in the given polynomial, we have " t " as the only variable and the powers of " t " is not whole numbers. Therefore, we conclude that $3 \sqrt{t}+\mathrm{t} \sqrt{2}$ is not a polynomial in one variable

