### Chapter 6: Lines and Angles Exercise 6.1

Question 1: In figure, if AB || CD || EE, PQ || RS,  $\angle$ RQD = 25° and  $\angle$ CQP = 60°, then  $\angle$ QRS is equal to



Answer: (c) Given, PQ || RS  $\angle$ PQC =  $\angle$ BRS = 60° [alternate exterior angles and  $\angle$ PQC = 60° (given)] and  $\angle$ DQR =  $\angle$ QRA = 25° [alternate interior angles] [ $\angle$ DQR = 25°, given]  $\angle$ QRS =  $\angle$ QRA +  $\angle$ ARS =  $\angle$ QRA + (180° -  $\angle$ BRS) [linear pair axiom] = 25° + 180° - 60° = 205° - 60° = 145°

Question 2: If one angle of a triangle is equal to the sum of the other two angles, then the triangle is (a) an isosceles triangle (b) an obtuse triangle

(c) an equilateral triangle (d) a right triangle

Answer: (d) Let the angles of a AABC be  $\angle A$ ,  $\angle B$  and  $\angle C$ . Given,  $\angle A = \angle B + \angle C$  ...(i) InMBC,  $\angle A + \angle B + \angle C - 180^{\circ}$  [sum of all angles of atriangle is  $180^{\circ}$ ]...(ii) From Eqs. (i) and (ii),  $\angle A + \angle A = 180^{\circ}$ or,  $2 \angle A = 180^{\circ}$ or,  $180^{\circ} \div 2$   $\angle A = 90^{\circ}$ Hence, the triangle is a right triangle.

Question 3: An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is (a)  $37 \frac{1}{2}^{\circ}$  (b)  $52 \frac{1}{2}^{\circ}$  (c)  $72 \frac{1}{2}^{\circ}$  (d)  $75^{\circ}$ Answer: Let one of interior angle be x°. Sum of two opposite interior angles = Exterior angle Hence, x° + x° = 105° 2x° = 105° x° = 105° ÷ 2 x°=52 \frac{1}{2}^{\circ}

Hence, each angle of a triangle is  $52 \frac{1}{2}^{\circ}$ .

Question 4: If the angles of a triangle are in the ratio 5:3:7, then the triangle is (a) an acute angled triangle (b) an obtuse angled triangle (c) a right angled triangle (d) an isosceles triangle

Answer: (a) Given, the ratio of angles of a triangle is 5 : 3 : 7. Let angles of a triangle be  $\angle A, \angle B$  and  $\angle C$ . Then,  $\angle A = 5x$ ,  $\angle B = 3x$  and  $\angle C = 7x$ In  $\triangle ABC$ ,  $\angle A + \angle B + \angle C = 180^{\circ}$  [since, sum of all angles of a triangle is 180°]  $5x + 3x + 7x = 180^{\circ}$ or,  $15x = 180^{\circ}$   $x = 180^{\circ} \div 15 = 12^{\circ}$   $\angle A = 5x = 5 \times 12^{\circ} = 60^{\circ}$   $\angle B = 3x = 3 \times 12^{\circ} = 36^{\circ}$ and  $\angle C = 7x = 7 \times 12^{\circ} = 84^{\circ}$ Since, all angles are less than 90°, hence the triangle is an acute angled triangle.

Question 5: If one of the angles of a triangle is 130°, then the angle betweenthe bisectors of the other two angles can be(a) 50°(b) 65°(c) 145°(d) 155

Answer:



In  $\triangle ABC$ ,  $\angle A + \angle B + \angle C = 180^{\circ}$ or,  $\frac{1}{2} \angle A + \frac{1}{2} \angle B + \frac{1}{2} \angle C = \frac{180^{\circ}}{2} = 90^{\circ}$ or,  $\frac{1}{2} \angle B + \frac{1}{2} \angle C = 90^{\circ} - \frac{1}{2} \angle A$  .....[in  $\triangle OBC$ ,  $\angle OBC + \angle BCO + \angle COB = 180^{\circ}$ ] or,  $180^{\circ} - \angle BOC = 90^{\circ} - \frac{1}{2} \angle A$ Therefore,  $\angle BOC = 180^{\circ} - 90^{\circ} + \frac{1}{2} \angle A$  $= 90^{\circ} + \frac{1}{2} \angle A$   $= 90^{0} + \frac{1}{2} \times 130^{\circ}$  $= 90^{0} + 65^{0}$ 

Hence, the required angle is 155<sup>°</sup>

### Question 6: In the figure, POQ is a line. The value of x is



When two or more rays are initiated from a same point of a line, then the sum of all angles made between the rays and line at the same point is 180°.

Answer: Since, POQ is a line segment,



Therefore,  $\angle POQ = 180^{\circ}$ or,  $\angle POA + \angle AOB + \angle BOQ = 180^{\circ}$ or,  $40^{\circ} + 4x + 3x = 180^{\circ}$ or,  $7x = 180^{\circ} - 40^{\circ}$ or,  $7x = 140^{\circ}$ or,  $x = 20^{\circ}$ 

Question 7: In the figure, if OP || RS,  $\angle$ OPQ = 110° and  $\angle$ QRS = 130°, then  $\angle$ PQR is equal to



Answer: (c)

. - - X 130° + 0 110°

In the given figure, producing OP to intersect RQ at X. Since, OP || RS and RX is a transversal. So,  $\angle RXP = \angle XRS$  [alternate angles] or,  $\angle RXP = 130^{\circ}$  ....[Since, Given,  $\angle QRS = 130^{\circ}$ ] .....(1) Now, RQ is a line-segment. So,  $\angle PXQ + \angle RXP = 180^{\circ}$  [Linear pair axiom] or,  $\angle PXQ = 180^{\circ} - \angle RXP$ or,  $\angle PXQ = 180^{\circ} - 130^{\circ}$ or,  $\angle PXQ = 50^{\circ}$ In triangle PQX,  $\angle OPQ$  is an exterior angle.

Thus,  $\angle OPQ = \angle PXQ + \angle PQX$  [Since, exterior angle = sum of the opposite interior angles] or,  $110^{0} = 50^{0} + \angle PQX$ or,  $\angle PQX = 110^{0} - 50^{0}$ Therefore,  $\angle PQR = 60^{0}$ 

Question 8: Angles of a triangle are in the ratio 2:4:3. The smallest angle of the triangle is (a) 60° (b) 40° (c) 80° (d) 20° Thinking Process Use the concept, the sum of all angles in a triangle is 180°. Further, simplify it and get the smallest angle.

Answer: (b) Given, the ratio of angles of a triangle is 2 : 4 : 3. Let the angles of a triangle be  $\angle A$ ,  $\angle B$  and  $\angle C$ .  $\angle A = 2x$ ,  $\angle B = 4x$   $\angle C = 3x$ ,  $\angle A + \angle B + \angle C = 180^{\circ}$ [sum of all the angles of a triangle is 180°]  $2x + 4x + 3x = 180^{\circ}$   $9x = 180^{\circ}$   $x = 180^{\circ}/9 = 20^{\circ}$   $\angle A = 2x = 2 \times 20^{\circ} = 40^{\circ}$  $\angle B = 4x = 4 \times 20^{\circ} = 80^{\circ}$   $\angle C = 3x = 3 \times 20^{\circ} = 60^{\circ}$ Hence, the smallest angle of a triangle is 40°.

### Exercise 6.2(Very short Answer Question)

Question 1: For what value of x + y in figure will ABC be a line? Justify your answer.



Answer: For ABC to be a line, the sum of the two adjacent angles must be  $180^{\circ}$  i.e.,  $x + y = 180^{\circ}$ .

### Question 2: Can a triangle have all angles less than 60°? Give reason for your answer.

Answer: No, a triangle cannot have all angles less than 60°, because if all angles will be less than 60°, then their sum will not be equal to 180°. Hence, it will not be a triangle.

# Question 3: Can a triangle have two obtuse angles? Give reason for your answer.

Answer: No, because if the triangle have two obtuse angles i.e., more than 90° angle, then the sum of all three angles of a triangle will not be equal to 180°.

# Question 4: How many triangles can be drawn having its angles as 45°, 64° and 72°? Give reason for your answer.

Answer: None, the sum of given angles =  $45^{\circ} + 64^{\circ} + 72^{\circ} = 181^{\circ} \neq 180^{\circ}$ . Hence, we see that sum of all three angles is not equal to  $180^{\circ}$ . So, no triangle can be drawn with the given angles.

# Question 5: How many triangles can be drawn having its angles as 53°, 64° and 63°? Give reason for your answer.

Answer : Infinitely many triangles, The sum of given angles =  $53^{\circ} + 64^{\circ} + 63^{\circ} = 180^{\circ}$  Here, we see that sum of all interior angles of triangle is 180°, so infinitely many triangles can be drawn.

### Question 6: In the figure, find the value of x for which the lines I and m are parallel.



Answer :In the given figure, I || m and we know that, if a transversal intersects two parallel lines, then sum of interior angles on the same side of a transversal is supplementary.  $x + 44^\circ = 180^\circ$  $x = 180^\circ - 44^\circ$  or,  $x = 136^\circ$ .

# Question 7: Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.

Answer: No, because each of these will be a right angle only when they form a linear pair.

### **Question 8:**

### If one of the angles formed by two intersecting lines is a right angle, what can you say about the other three angles? Give reason for your answer.

Answer: Let two intersecting lines I and m makes a one right angle, then it means that lines I and m are perpendicular each other. By using linear pair axiom aniom, other three angles will be a right angle.



Question 9: In the figure, which of the two lines are parallel and why?



Answer: In Fig. (i) sum of two interior angles  $132^{\circ} + 48^{\circ} = 180^{\circ}$  [ $\therefore$  equal to  $180^{\circ}$ ] Here, we see that the sum of two interior angles on the same side of n is  $180^{\circ}$ , then they are the parallel lines.

In Fig. (ii), the sum of two interior angles  $73^{\circ} + 106^{\circ} = 179^{\circ} \neq 180^{\circ}$ . Here, we see that the sum of two interior angles on same side of r is not equal to 180°, then they are not the parallel lines.

#### Question 10:

### Two lines I and m are perpendicular to the same line n. Are I and m perpendicular to each other? Give reason for your answer.

Answer: No, since, lines I and m are perpendicular to the line n.  $\angle 1 = \angle 2 = 90^{\circ} [: 1 \perp n \text{ and min}]$ It implies that these are corresponding angles. Hence, I|| m.



### Exercise 6.3 (Short type Questions)

Question 1: In the figure, OD is the bisector of  $\angle AOC$ , OE is the bisector of  $\angle BOC$  and OD  $\perp$  OE. Show that the points A, 0 and B are collinear.

Thinking Process For showing collinearity of A, O and B, we have to show that  $\angle AOB = 180^{\circ}$ .

Answer: Given In the figure, OD  $\perp$  OE, OD and OE are the bisectors of  $\angle$ AOC and  $\angle$ BOC. To show Points A, O and B are collinear i.e., AOB is a straight line. Proof Since, OD and OE bisect angles  $\angle$ AOC and  $\angle$ BOC, respectively.  $\angle$ AOC =2  $\angle$ DOC ...(i) and  $\angle$ COB = 2  $\angle$ COE ...(ii) On adding Eqs. (i) and (ii), we get  $\angle$ AOC +  $\angle$ COB = 2  $\angle$ DOC +2  $\angle$ COE =>  $\angle$ AOC + $\angle$ COB = 2( $\angle$ DOC + $\angle$ COE) or,  $\angle$ AOC +  $\angle$ COB = 2  $\angle$ DOE or,  $\angle$ AOC +  $\angle$ COB = 2  $\angle$ DOE or,  $\angle$ AOC +  $\angle$ COB = 2 x 90° [ $\therefore$  OD  $\perp$  OE] or,  $\angle$ AOC +  $\angle$ COB = 180°  $\therefore \angle$ AOB = 180° So,  $\angle$ AOC and  $\angle$ COB are forming linear pair. Also, AOB is a straight line. Hence, points A, O and B are collinear.

### **Question 2:**

In the figure,  $\angle 1 = 60^{\circ}$  and  $\angle 6 = 120^{\circ}$ . Show that the lines m and n are parallel.



Answer: Given In the figure  $\angle 1 = 60^{\circ}$  and  $\angle 6 = 120^{\circ}$ To show m||n Proof Since,  $\angle 1 = 60^{\circ}$  and  $\angle 6 = 120^{\circ}$ Here,  $\angle 1 = \angle 3$  [vertically opposite angles]  $\angle 3 = \angle 1 = 60^{\circ}$ Now,  $\angle 3 + \angle 6 = 60^{\circ} + 120^{\circ}$ or,  $\angle 3 + \angle 6 = 180^{\circ}$ We know that, if the sum of two interior angles on same side of I is 180°, then lines are parallel. Hence, m || n

Question 3:

AP and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines I and m (in the given figure). Show that AP || BQ.



Answer: Given In the figure I || m, AP and BQ are the bisectors of  $\angle EAB$  and  $\angle ABH$ , respectively.

To prove AP|| BQ Proof Since, I || m and t is transversal. Therefore,  $\angle EAB = \angle ABH$  [alternate interior angles]



 $\frac{1}{2} \angle EAB = \frac{1}{2} \angle ABH$  [dividing both sides by 2]

∠PAB =∠ABQ

[AP and BQ are the bisectors of  $\angle$ EAB and  $\angle$ ABH] Since,  $\angle$ PAB and  $\angle$ ABQ are alternate interior angles with two lines AP and BQ and transversal AB. Hence, AP || BQ.

Question 4: In the given figure, bisectors AP and BQ of the alternate interior angles are parallel, then show that I ||m.



Answer: Given, In the figure AP|| BQ, AP and BQ are the bisectors of alternate interior angles  $\angle CAB$  and  $\angle ABF$ .

To show I || m

Proof Since, AP|| BQ and t is transversal, therefore  $\angle PAB = \angle ABQ$  [alternate interior angles]

or,  $2 \angle PAB = 2 \angle ABQ$  [multiplying both sides by 2]



So, alternate interior angles are equal.

We know that, if two alternate interior angles are equal, then lines are parallel. Hence, I  $\parallel$  m.





Answer: Given BA || ED and BC || EF. To show  $\angle ABC = \angle DEF$ . Construction Draw a ray EP opposite to ray ED.

Proof: In the figure, BA || ED or BA || DP Therefore,  $\angle ABP = \angle EPC$ .....[Corresponding angles] or,  $\angle ABC = \angle EPC$ .....(1) Again, BC || EF or PC || EF Therefore,  $\angle DEF = \angle EPC$  .....[Corresponding angles] (2) From eq (1) and (2),  $\angle ABC = \angle DEF$  Question 6: In the figure, BA || ED and BC || EF. Show that  $\angle ABC + \angle DEF = 180^{\circ}$ .

В

Answer: Given BA || ED and BC || EF To show,  $\angle ABC + \angle DEF = 180^{\circ}$ Construction Draw a ray PE opposite to ray EF.



Proof: in the figure, BC || EF Therefore,  $\angle$ EPB +  $\angle$ PBC = 180<sup>0</sup> .....(1)..[Sum of the co-interior angles is 180<sup>0</sup>] Now, AB || ED and PE is a transversal line, Therefore,  $\angle$ EPB =  $\angle$ DEF .....(2) [Corresponding angles] From eq(1) and eq(2),  $\angle$ DEF +  $\angle$ PBC = 180<sup>0</sup> or,  $\angle$ ABC +  $\angle$ DEF = 180<sup>0</sup> [Since,  $\angle$ PBC =  $\angle$ ABC]

Question 7: In the figure, DE || QR and AP and BP are bisectors of  $\angle$ EAB and  $\angle$ RBA, respectively. Find  $\angle$ APB.



Answer: Given, DE || QR and AP and PB are the bisectors of  $\angle$ EAB and  $\angle$ RBA, respectively. We know that, the interior angles on the same sides of transversal are supplementary. Therefore,  $\angle$ EAB +  $\angle$ RBA = 180<sup>0</sup> or,  $\frac{1}{2}\angle$ EAB +  $\frac{1}{2}\angle$ RBA = 90<sup>0</sup> ....[dividing both sides by 2] .....(1) Since, AP and BP are the bisectors of  $\angle$ EAB and  $\angle$ RBA, respectively, Therefore,  $\angle$ BAP =  $\frac{1}{2}\angle$ EAB .....(2) and,  $\angle$ ABP =  $\frac{1}{2}\angle$ RBA .....(2) and ding eq(2) and (3) we get,  $\angle$ BAP +  $\angle$ ABP =  $\frac{1}{2}\angle$ EAB +  $\frac{1}{2}\angle$ RBA from eq(1),  $\angle$ BAP +  $\angle$ ABP = 90<sup>0</sup>....(4)

In triangle APB,  $\angle BAP + \angle ABP + \angle APB = 180^{\circ}$ or,  $90^{\circ} + \angle APB = 180^{\circ}$ or,  $\angle APB = 90^{\circ}$ 

### Question 8 : A $\triangle$ ABC is right angled at A. L is a point on BC such that AL $\perp$ BC. Prove that $\angle$ BAL = $\angle$ ACB.

Answer: Given In  $\triangle ABC$ ,  $\angle A = 90^{\circ}$  and AL  $\perp BC$ To prove  $\angle BAL = \angle ACB$ Proof In  $\triangle ABC$  and  $\triangle LAC$ ,  $\angle BAC = \angle ALC$  [each 90°] .....(1)

and  $\angle ABC = \angle ABL$  [common angle] .....(2)  $B = \sum_{L} \sum_{C} \sum$ 

#### Question 9: Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.

Answer: Given Two lines m and n are parallel and another two lines p and q are respectively perpendicular to m and n.

i.e., p⊥m, p⊥n,q⊥m,q⊥n To prove p||g

Proof Since, m || n and p is perpendicular to m and n.

$$\underbrace{\begin{array}{c}1\\1\\2\\4\\3\\7\\6\\m\end{array}}^{p} \xrightarrow{8} \xrightarrow{7} \xrightarrow{6} \xrightarrow{6} \xrightarrow{m}$$

Therefore,  $\angle 1 = \angle 10 = 90^{\circ}$   $\angle 2 = \angle 9 = 90^{\circ}$ Thus, Similarly, if m || n and q is perpendicular to m and n. Then,  $\angle 7 = 90^{\circ}$  and  $\angle 11 = 90^{\circ}$ Now,  $\angle 3 + \angle 7 = 90^{\circ} + 90^{\circ} = 180^{\circ}$ So, the sum of the two interior angles is supplementary. We know that, if a transversal intersects two lines such that a pair of interior angles

We know that, if a transversal intersects two lines such that a pair of interior angles on the same side of the transversal is supplementary, then the two lines are parallel. Hence, p||g.

### Exercise 6.4 (Long answer type question)

# Question 1: If two lines intersect prove that the vertically opposite angles are equal.

Answer: Given Two lines AB and CD intersect at point O. To prove: (i)  $\angle AOC = \angle BOD$ (ii)  $\angle AOD = \angle BOC$ Proof : (i) Ray OA stands on line AB.  $\angle AOC + \angle AOC = 180^{\circ}$  ......[Linear axiom] (1) Ray OD stands on line AB.  $\angle AOD + \angle BOD = 180^{\circ}$  ......[Linear axiom] (2)



From eq(1) and eq(2),  $\angle AOC + \angle AOD = \angle AOD + \angle BOD$ or,  $\angle AOC = \angle BOD$ 

(ii) Since ray OD stands on line AB Hence,  $\angle AOD + \angle BOD = 180^{\circ}$  ......[Linear pair axiom].(3) Since ray OB stands on line CD Hence,  $\angle DOB + \angle BOC = 180^{\circ}$ from eq(3) and eq(4)  $\angle AOD + \angle BOD = \angle DOB + \angle BOC$ or,  $\angle AOD = \angle BOC$ 

Question 2: Bisectors of interior  $\angle B$  and exterior  $\angle ACD$  of a  $\triangle ABC$  intersect at the point T. Prove that  $\angle BTC = \frac{1}{2} \angle BAC$ .

#### **Thinking Process**

For obtaining the interior required result use the property that the exterior angle of a triangle is equal to the sum of the two opposite angles of a triangle.



Answer: Given In AABC, produce SC to D and the bisectors of  $\angle ABC$  and  $\angle ACD$  meet at point T. To prove  $\angle BTC = \frac{1}{2} \angle BAC$ .

Proof: In triangle ABC,  $\angle ACD = \angle ABC + \angle CAB$  [exterior angle of a triangle is equal to the sum of two opposite angles]

or,  $\frac{1}{2} \angle ACD = \frac{1}{2} \angle CAB + \frac{1}{2} \angle ABC$  [dividing both sides by 2] or,  $\angle TCD = \frac{1}{2} \angle CAB + \frac{1}{2} \angle ABC$  .....(1) [CT is the bisector od  $\frac{1}{2} \angle ACD$ , or,  $\frac{1}{2} \angle ACD = \angle TCD$ ] In triangle BTC,  $\angle$ TCD =  $\angle$ BTC +  $\angle$ CBT or,  $\angle$ TCD =  $\angle$ BTC +  $\frac{1}{2}\angle$ ABC .....(2)[BT bisects of  $\angle$ ABC, or,  $\angle$ CBT =  $\frac{1}{2}\angle$ ABC] From eq(1) and eq(2),  $\frac{1}{2}\angle$ CAB +  $\frac{1}{2}\angle$ ABC =  $\angle$ BTC +  $\frac{1}{2}\angle$ ABC or,  $\angle$ BTC =  $\frac{1}{2}\angle$ CAB or,  $\angle$ BTC =  $\frac{1}{2}\angle$ CAB or,  $\angle$ BTC =  $\frac{1}{2}\angle$ BAC.

### Question 3: A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.

Answer: Given Two lines AB and CD are parallel and intersected by transversal t at P and O, respectively. Also, EP and FQ are the bisectors of angles  $\angle$ APG and  $\angle$ CQP, respectively.



To prove EP || FQ Proof: Given, AB || CD

 $\angle APG = \angle CQP$  ......[corresponding angles] or,  $\frac{1}{2} \angle APG = \frac{1}{2} \angle CQP$  .....[dividing both sides by 2] or,  $\angle EPG = \angle FQP$ Therefore, EP || FQ.

# Question 4: Prove that through a given point, we can draw only one perpendicular to a given line.

Answer: Given Consider a line I and a point P.



Construction: draw two intersecting lines passing through the point P and which is perpendicular to *I*.

To prove: only one perpendicular line can be drawn through a given point i.e., to prove  $\angle P = 0^{\circ}$ Proof: In triangle APB,  $\angle A + \angle P + \angle B = 180^{\circ}$  [by angle sum property of a triangle is  $180^{\circ}$ ]

or,  $90^{\circ} + \angle P + 90^{\circ} = 180^{\circ}$ or,  $\angle P = 0^{\circ}$ 

So, lines *n* and *m* coincide.

Hence, only one perpendicular line can be drawn through a given point.

# Question 5: Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other.

Answer: Given Let lines, I and m are two intersecting lines. Again, let n and p be another two lines that are perpendicular to the intersecting lines meet at point D.



To prove Two lines n and p intersecting at a point.

Proof Suppose we consider lines n and p are not intersecting, then it means they are parallel to each other i.e.,  $n \parallel p \dots (i)$ 

Since, lines n and pare perpendicular to m and I, respectively.

But from Eq. (i) n || p it implies that I || m.

Hence, it is a contradiction.

Thus, our assumption is wrong.

Therefore, lines n and p intersect at a point.