Chapter 6: Lines and Angles

Exercise 6.1

Question 1: In figure, if $A B||C D|| E E, P Q| | R S, \angle R Q D=25^{\circ}$ and $\angle C Q P=60^{\circ}$, then \angle QRS is equal to

(a) 85°
(b) 135°
(c) 145°
(d) 110°

Answer: (c) Given, PQ || RS
$\angle \mathrm{PQC}=\angle \mathrm{BRS}=60^{\circ}$ [alternate exterior angles and $\angle \mathrm{PQC}=60^{\circ}$ (given)] and $\angle \mathrm{DQR}$ $=\angle \mathrm{QRA}=25^{\circ}$ [alternate interior angles]
[$\angle \mathrm{DQR}=25^{\circ}$, given]
$\angle Q R S=\angle Q R A+\angle A R S$
$=\angle \mathrm{QRA}+\left(180^{\circ}-\angle \mathrm{BRS}\right)$ [linear pair axiom]
$=25^{\circ}+180^{\circ}-60^{\circ}=205^{\circ}-60^{\circ}=145^{\circ}$

Question 2: If one angle of a triangle is equal to the sum of the other two angles, then the triangle is
(a) an isosceles triangle
(b) an obtuse triangle
(c) an equilateral triangle
(d) a right triangle

Answer: (d) Let the angles of a AABC be $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.
Given, $\angle A=\angle B+\angle C \ldots$ (i)
$\operatorname{InMBC}, \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}-180^{\circ}$ [sum of all angles of atriangle is 180°] ..(ii)
From Eqs. (i) and (ii),
$\angle A+\angle A=180^{\circ}$
or, $2 \angle A=180^{\circ}$
or, $180^{\circ} \div 2$
$\angle A=90^{\circ}$
Hence, the triangle is a right triangle.
Question 3: An exterior angle of a triangle is 105° and its two interior opposite angles are equal. Each of these equal angles is
(a) $37 \frac{1}{1} 2^{\circ}$
(b) $521 \frac{1}{2}{ }^{\circ}$
(c) $721 / 2^{\circ}$
(d) 75°

Answer: Let one of interior angle be x°.
Sum of two opposite interior angles $=$ Exterior angle
Hence, $x^{\circ}+x^{\circ}=105^{\circ}$
$2 x^{\circ}=105^{\circ}$
$x^{\circ}=105^{\circ} \div 2$
$x^{\circ}=521 / 2^{\circ}$
Hence, each angle of a triangle is $521 / 2^{\circ}$.

Question 4: If the angles of a triangle are in the ratio 5:3:7, then the triangle is
(a) an acute angled triangle
(b) an obtuse angled triangle
(c) a right angled triangle
(d) an isosceles triangle

Answer: (a) Given, the ratio of angles of a triangle is $5: 3: 7$.
Let angles of a triangle be $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.
Then, $\angle A=5 x, \angle B=3 x$ and $\angle C=7 x$
In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$ [since, sum of all angles of a triangle is 180°]
$5 x+3 x+7 x=180^{\circ}$
or, $15 x=180^{\circ}$
$x=180^{\circ} \div 15=12^{\circ}$
$\angle A=5 x=5 \times 12^{\circ}=60^{\circ}$
$\angle B=3 x=3 \times 12^{\circ}=36^{\circ}$
and $\angle \mathrm{C}=7 \mathrm{x}=7 \times 12^{\circ}=84^{\circ}$
Since, all angles are less than 90°, hence the triangle is an acute angled triangle.

Question 5: If one of the angles of a triangle is 130°, then the angle between the bisectors of the other two angles can be
(a) 50°
(b) 65°
(c) 145°
(d) 155

Answer:

In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$
or, $\frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=\frac{180^{\circ}}{2}=90^{\circ}$
or, $\frac{1}{2} \angle B+\frac{1}{2} \angle C=90^{\circ}-\frac{1}{2} \angle A \quad \ldots \ldots \ldots$. [in $\triangle O B C, \angle O B C+\angle B C O+\angle C O B=180^{\circ}$]
or, $180^{\circ}-\angle B O C=90^{\circ}-\frac{1}{2} \angle A$
Therefore, $\angle B O C=180^{\circ}-90^{\circ}+\frac{1}{2} \angle A$
$=90^{\circ}+\frac{1}{2} \angle A$
$=90^{\circ}+\frac{1}{2} \times 130^{\circ}$
$=90^{\circ}+65^{\circ}$
Hence, the required angle is 155°

Question 6: In the figure, POQ is a line. The value of x is

(a) 20°
(b) 25°
(c) 30°
(d) 35°

Thinking Process
When two or more rays are initiated from a same point of a line, then the sum of all angles made between the rays and line at the same point is 180°.

Answer: Since, POQ is a line segment,

Therefore, $\angle \mathrm{POQ}=180^{\circ}$
or, $\angle \mathrm{POA}+\angle \mathrm{AOB}+\angle \mathrm{BOQ}=180^{\circ}$
or, $40^{\circ}+4 x+3 x=180^{\circ}$
or, $7 x=180^{\circ}-40^{\circ}$
or, $7 x=140^{\circ}$
or, $x=20^{\circ}$
Question 7: In the figure, if $O P\left|\mid R S, \angle O P Q=110^{\circ}\right.$ and $\angle Q R S=130^{\circ}$, then $\angle P Q R$ is equal to

(a) 40°
(b) 50°
(c) 60°
(d) 70°

Answer: (c)

In the given figure, producing $O P$ to intersect $R Q$ at X.
Since, $O P$ || $R S$ and $R X$ is a transversal.
So, $\angle R X P=\angle X R S$ [alternate angles]
or, $\angle R X P=130^{\circ} \ldots$. [Since, Given, $\angle Q R S=130^{\circ}$]
Now, RQ is a line-segment.
So, $\angle P X Q+\angle R X P=180^{\circ}$ [Linear pair axiom]
or, $\angle P X Q=180^{\circ}-\angle R X P$
or, $\angle P X Q=180^{\circ}-130^{\circ}$
or, $\angle P X Q=50^{\circ}$
In triangle $\mathrm{PQX}, \angle \mathrm{OPQ}$ is an exterior angle.
Thus, $\angle \mathrm{OPQ}=\angle \mathrm{PXQ}+\angle \mathrm{PQX}$ [Since, exterior angle $=$ sum of the opposite interior angles]
or, $110^{\circ}=50^{\circ}+\angle \mathrm{PQX}$
or, $\angle P Q X=110^{\circ}-50^{\circ}$
Therefore, $\angle P Q R=60^{\circ}$

Question 8: Angles of a triangle are in the ratio 2:4:3. The smallest angle of the triangle is
(a) 60°
(b) 40°
(c) 80°
(d) 20°

Thinking Process
Use the concept, the sum of all angles in a triangle is 180°. Further, simplify it and get the smallest angle.

Answer: (b) Given, the ratio of angles of a triangle is $2: 4: 3$.
Let the angles of a triangle be $\angle A, \angle B$ and $\angle C$.
$\angle A=2 x, \angle B=4 x$
$\angle C=3 x, \angle A+\angle B+\angle C=180^{\circ}$
[sum of all the angles of a triangle is 180°]
$2 x+4 x+3 x=180^{\circ}$
$9 x=180^{\circ}$
$x=180^{\circ} / 9=20^{\circ}$
$\angle A=2 x=2 \times 20^{\circ}=40^{\circ}$
$\angle B=4 x=4 \times 20^{\circ}=80^{\circ}$

$$
\angle C=3 x=3 \times 20^{\circ}=60^{\circ}
$$

Hence, the smallest angle of a triangle is 40°.

Exercise 6.2(Very short Answer Question)

Question 1: For what value of $x+y$ in figure will ABC be a line? Justify your answer.

Answer: For ABC to be a line, the sum of the two adjacent angles must be 180° i.e., x $+y=180^{\circ}$.

Question 2: Can a triangle have all angles less than 60° ? Give reason for your answer.

Answer: No, a triangle cannot have all angles less than 60°, because if all angles will be less than 60°, then their sum will not be equal to 180°. Hence, it will not be a triangle.

Question 3: Can a triangle have two obtuse angles? Give reason for your answer.

Answer: No , because if the triangle have two obtuse angles i.e., more than 90° angle, then the sum of all three angles of a triangle will not be equal to 180°.

Question 4: How many triangles can be drawn having its angles as $45^{\circ}, 64^{\circ}$ and 72° ? Give reason for your answer.

Answer: None, the sum of given angles $=45^{\circ}+64^{\circ}+72^{\circ}=181^{\circ} \neq 180^{\circ}$. Hence, we see that sum of all three angles is not equal to 180°. So, no triangle can be drawn with the given angles.

Question 5: How many triangles can be drawn having its angles as $53^{\circ}, 64^{\circ}$ and 63° ? Give reason for your answer.

Answer :Infinitely many triangles,
The sum of given angles $=53^{\circ}+64^{\circ}+63^{\circ}=180^{\circ}$

Here, we see that sum of all interior angles of triangle is 180°, so infinitely many triangles can be drawn.

Question 6:

In the figure, find the value of \mathbf{x} for which the lines I and m are parallel.

Answer :In the given figure, I || m and we know that, if a transversal intersects two parallel lines, then sum of interior angles on the same side of a transversal is supplementary. $x+44^{\circ}=180^{\circ}$
$x=180^{\circ}-44^{\circ}$
or, $x=136^{\circ}$.

Question 7: Two adjacent angles are equal. Is it necessary that each of these angles will be a right angle? Justify your answer.

Answer: No, because each of these will be a right angle only when they form a linear pair.

Question 8:

If one of the angles formed by two intersecting lines is a right angle, what can you say about the other three angles? Give reason for your answer.

Answer: Let two intersecting lines I and m makes a one right angle, then it means that lines I and m are perpendicular each other. By using linear pair axiom aniom, other three angles will be a right angle.

Question 9:

In the figure, which of the two lines are parallel and why?

Answer: In Fig. (i) sum of two interior angles $132^{\circ}+48^{\circ}=180^{\circ}\left[\therefore\right.$ equal to $\left.180^{\circ}\right]$ Here, we see that the sum of two interior angles on the same side of n is 180°, then they are the parallel lines.
In Fig. (ii), the sum of two interior angles $73^{\circ}+106^{\circ}=179^{\circ} \neq 180^{\circ}$. Here, we see that the sum of two interior angles on same side of r is not equal to 180°, then they are not the parallel lines.

Question 10:

Two lines I and m are perpendicular to the same line n. Are I and m perpendicular to each other? Give reason for your answer.

Answer: No, since, lines I and m are perpendicular to the line n. $\angle 1=\angle 2=90^{\circ}[\because \mathrm{I} \perp \mathrm{n}$ and min] It implies that these are corresponding angles.
Hence, I|| m.

Exercise 6.3 (Short type Questions)

Question 1: In the figure, $O D$ is the bisector of $\angle A O C, O E$ is the bisector of $\angle B O C$ and $O D \perp O E$. Show that the points $A, 0$ and B are collinear.

Thinking Process
For showing collinearity of A, O and B, we have to show that $\angle A O B=180^{\circ}$.

Answer: Given In the figure, $O D \perp O E, O D$ and $O E$ are the bisectors of $\angle A O C$ and $\angle B O C$.
To show Points A, O and B are collinear i.e., $A O B$ is a straight line.
Proof Since, OD and OE bisect angles $\angle A O C$ and $\angle B O C$, respectively.
$\angle A O C=2 \angle D O C$...(i)
and $\angle C O B=2 \angle C O E \ldots$ (ii)
On adding Eqs. (i) and (ii), we get
$\angle A O C+\angle C O B=2 \angle D O C+2 \angle C O E=>\angle A O C+\angle C O B=2(\angle D O C+\angle C O E)$
or, $\angle A O C+\angle C O B=2 \angle D O E$
or, $\angle A O C+\angle C O B=2 \times 90^{\circ}[\therefore \mathrm{OD} \perp \mathrm{OE}]$
or, $\angle A O C+\angle C O B=180^{\circ}$
$\therefore \angle \mathrm{AOB}=180^{\circ}$
So, $\angle A O C$ and $\angle C O B$ are forming linear pair.
Also, AOB is a straight line.
Hence, points A, O and B are collinear.

Question 2:

In the figure, $\angle 1=60^{\circ}$ and $\angle 6=120^{\circ}$. Show that the lines m and n are parallel.

Answer: Given In the figure $\angle 1=60^{\circ}$ and $\angle 6=120^{\circ}$
To show m||n
Proof Since, $\angle 1=60^{\circ}$ and $\angle 6=120^{\circ}$
Here, $\angle 1=\angle 3$ [vertically opposite angles]
$\angle 3=\angle 1=60^{\circ}$
Now, $\angle 3+\angle 6=60^{\circ}+120^{\circ}$
or, $\angle 3+\angle 6=180^{\circ}$
We know that, if the sum of two interior angles on same side of I is 180°, then lines are parallel.
Hence, m || n

Question 3:

$A P$ and BQ are the bisectors of the two alternate interior angles formed by the intersection of a transversal t with parallel lines I and m (in the given figure). Show that AP || BQ.

Answer: Given In the figure I \|m, AP and BQ are the bisectors of $\angle E A B$ and $\angle A B H$, respectively.
To prove AP|| BQ
Proof Since, I || m and t is transversal.
Therefore, $\angle E A B=\angle A B H$ [alternate interior angles]

$1 / 2 \angle E A B=1 / 2 \angle A B H \quad$ [dividing both sides by 2]
$\angle P A B=\angle A B Q$
[$A P$ and $B Q$ are the bisectors of $\angle E A B$ and $\angle A B H$] Since, $\angle P A B$ and $\angle A B Q$ are alternate interior angles with two lines $A P$ and $B Q$ and transversal $A B$. Hence, $A P$ || BQ.

Question 4:

In the given figure, bisectors AP and BQ of the alternate interior angles are parallel, then show that I \|m.

Answer: Given, In the figure $\mathrm{AP} \| \mathrm{BQ}, \mathrm{AP}$ and BQ are the bisectors of alternate interior angles $\angle \mathrm{CAB}$ and $\angle \mathrm{ABF}$.
To show I \| m
Proof Since, $A P|\mid B Q$ and t is transversal, therefore $\angle P A B=\angle A B Q$ [alternate interior angles]
or, $2 \angle \mathrm{PAB}=2 \angle \mathrm{ABQ}$ [multiplying both sides by 2]

So, alternate interior angles are equal.
We know that, if two alternate interior angles are equal, then lines are parallel.
Hence, I || m.

Question 5:

In the figure, $B A|\mid E D$ and $B C| \mid E F$. Show that $\angle A B C=\angle D E F$.

Answer: Given BA || ED and BC || EF.
To show $\angle A B C=\angle D E F$.
Construction Draw a ray EP opposite to ray ED.

[^0]Question 6: In the figure, $B A|\mid E D$ and $B C| \mid E F$. Show that $\angle A B C+\angle D E F=$ 180°.

Answer: Given BA || ED and BC || EF
To show, $\angle A B C+\angle D E F=180^{\circ}$
Construction Draw a ray PE opposite to ray EF.

Proof: in the figure, $\mathrm{BC} \| \mathrm{EF}$
Therefore, $\angle \mathrm{EPB}+\angle \mathrm{PBC}=180^{\circ}$ \qquad (1)..[Sum of the co-interior angles is 180°]

Now, $A B|\mid E D$ and $P E$ is a transversal line,
Therefore, $\angle E P B=\angle D E F$
(2) [Corresponding angles]

From eq(1) and eq(2),
$\angle D E F+\angle P B C=180^{\circ}$
or, $\angle \mathrm{ABC}+\angle \mathrm{DEF}=180^{\circ} \quad[$ Since,$\angle \mathrm{PBC}=\angle \mathrm{ABC}]$

Question 7: In the figure, DE || QR and AP and BP are bisectors of $\angle E A B$ and $\angle R B A$, respectively. Find $\angle A P B$.

Answer: Given, $\mathrm{DE} \| \mathrm{QR}$ and AP and PB are the bisectors of $\angle \mathrm{EAB}$ and $\angle \mathrm{RBA}$, respectively.
We know that, the interior angles on the same sides of transversal are supplementary.
Therefore, $\angle \mathrm{EAB}+\angle \mathrm{RBA}=180^{\circ}$
or, $\frac{1}{2} \angle E A B+\frac{1}{2} \angle R B A=90^{\circ} \ldots$.[dividing both sides by 2]
Since, $A P$ and $B P$ are the bisectors of $\angle E A B$ and $\angle R B A$, respectively,
Therefore, $\angle B A P=\frac{1}{2} \angle E A B$
and, $\angle A B P=\frac{1}{2} \angle R B A$
On adding eq(2) and (3) we get,
$\angle B A P+\angle A B P=\frac{1}{2} \angle E A B+\frac{1}{2} \angle R B A$
from eq(1), $\angle B A P+\angle A B P=90^{\circ}$.
In triangle APB, $\angle B A P+\angle A B P+\angle A P B=180^{\circ}$
or, $90^{\circ}+\angle A P B=180^{\circ}$
or, $\angle A P B=90^{\circ}$

Question 8 : $A \triangle A B C$ is right angled at A. L is a point on $B C$ such that $A L \perp B C$. Prove that $\angle B A L=\angle A C B$.

Answer: Given In $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$ and $\mathrm{AL} \perp \mathrm{BC}$
To prove $\angle B A L=\angle A C B$
Proof In $\triangle A B C$ and $\triangle L A C, \angle B A C=\angle A L C$ [each 90°]
and $\angle \mathrm{ABC}=\angle \mathrm{ABL}$ [common angle]

On adding Eqs. (1) and (2), we get
$\angle B A C+\angle A B C=\angle A L C+\angle A B L$
Again, in $\triangle A B C$,
$\angle B A C+\angle A C B+\angle A B C=180^{\circ}$
[sum of all angles of a triangle is 180°] $=>\angle B A C+\angle A B C=180^{\circ}-\angle A C B$
In $\triangle \mathrm{ABL}$,
$\angle A B L+\angle A L B+\angle B A L=180^{\circ}$ [sum of all angles of a triangle is 180°]
or, $\angle A B L+\angle A L C=180^{\circ}-\angle B A L\left[\because \angle A L C=\angle A L B=90^{\circ}\right]$
On substituting the value from Eqs. (4) and (5) in Eq. (3), we get
$180^{\circ}-\angle A C S=180^{\circ}-\angle S A L$
or, $\angle A C B=\angle B A L$
Hence proved.

Question 9: Two lines are respectively perpendicular to two parallel lines. Show that they are parallel to each other.

Answer: Given Two lines m and n are parallel and another two lines p and q are respectively perpendicular to m and n.
i.e., $p \perp m, p \perp n, q \perp m, q \perp n$

To prove p|lg
Proof Since, $m \| n$ and p is perpendicular to m and n.

Therefore, $\angle 1=\angle 10=90^{\circ}$
$\angle 2=\angle 9==90^{\circ}$
Thus, Similarly, if $\mathrm{m} \| \mathrm{n}$ and q is perpendicular to m and n .
Then, $\angle 7=90^{\circ}$ and $\angle 11=90^{\circ}$
Now, $\angle 3+\angle 7=90^{\circ}+90^{\circ}=180^{\circ}$
So, the sum of the two interior angles is supplementary.
We know that, if a transversal intersects two lines such that a pair of interior angles on the same side of the transversal is supplementary, then the two lines are parallel. Hence, p||g.

Exercise 6.4 (Long answer type question)

Question 1: If two lines intersect prove that the vertically opposite angles are equal.

Answer: Given Two lines $A B$ and $C D$ intersect at point O.
To prove: (i) $\angle A O C=\angle B O D$
(ii) $\angle A O D=\angle B O C$

Proof : (i) Ray OA stands on line AB.
$\angle A O C+\angle A O C=180^{\circ}$ \qquad [Linear axiom] (1)
Ray OD stands on line AB.
$\angle A O D+\angle B O D=180^{\circ}$
[Linear axiom]

From eq(1) and eq(2),
$\angle A O C+\angle A O D=\angle A O D+\angle B O D$
or, $\angle A O C=\angle B O D$
(ii) Since ray OD stands on line $A B$

Hence, $\angle A O D+\angle B O D=180^{\circ}$.[Linear pair axiom].(3)
Since ray OB stands on line CD
Hence, $\angle D O B+\angle B O C=180^{\circ}$
from eq(3) and eq(4)
$\angle A O D+\angle B O D=\angle D O B+\angle B O C$
or, $\angle A O D=\angle B O C$

Question 2: Bisectors of interior $\angle B$ and exterior $\angle A C D$ of a $\triangle A B C$ intersect at the point T. Prove that $\angle B T C=1 / 2 \angle B A C$.
Thinking Process
For obtaining the interior required result use the property that the exterior angle of a triangle is equal to the sum of the two opposite angles of a triangle.

Answer: Given In $A A B C$, produce $S C$ to D and the bisectors of $\angle A B C$ and $\angle A C D$ meet at point T. To prove $\angle B T C=1 / 2 \angle B A C$.
Proof: In triangle $A B C, \angle A C D=\angle A B C+\angle C A B$ [exterior angle of a triangle is equal to the sum of two opposite angles]
or, $\frac{1}{2} \angle A C D=\frac{1}{2} \angle C A B+\frac{1}{2} \angle A B C$ [dividing both sides by 2]
or, $\angle T C D=\frac{1}{2} \angle C A B+\frac{1}{2} \angle A B C \ldots \ldots \ldots \ldots \ldots .(1)\left[C T\right.$ is the bisector od $\frac{1}{2} \angle A C D$, or, $\left.\frac{1}{2} \angle A C D=\angle T C D\right]$

In triangle $B T C, \angle T C D=\angle B T C+\angle C B T$
or, $\angle T C D=\angle B T C+\frac{1}{2} \angle A B C$
(2)[BT bisects of $\angle A B C$,
or, $\angle \mathrm{CBT}=\frac{1}{2} \angle \mathrm{ABC}$]

From eq(1) and eq(2),
$\frac{1}{2} \angle C A B+\frac{1}{2} \angle A B C=\angle B T C+\frac{1}{2} \angle A B C$
or, $\angle B T C=\frac{1}{2} \angle C A B$
or, $\angle \mathrm{BTC}=\frac{1}{2} \angle \mathrm{BAC}$.

Question 3: A transversal intersects two parallel lines. Prove that the bisectors of any pair of corresponding angles so formed are parallel.

Answer: Given Two lines AB and CD are parallel and intersected by transversal t at P and O , respectively. Also, EP and FQ are the bisectors of angles $\angle \mathrm{APG}$ and $\angle C Q P$, respectively.

To prove EP || FQ
Proof: Given, AB || CD
$\angle A P G=\angle C Q P$ \qquad [corresponding angles]
or, $\frac{1}{2} \angle A P G=\frac{1}{2} \angle C Q P \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.[dividing both sides by 2]
or, $\angle E P G=\angle F Q P$
Therefore, EP || FQ.

Question 4: Prove that through a given point, we can draw only one perpendicular to a given line.

Answer: Given Consider a line I and a point P.

Construction: draw two intersecting lines passing through the point P and which is perpendicular to l.
To prove: only one perpendicular line can be drawn through a given point i.e., to prove $\angle P=0^{\circ}$
Proof: In triangle $\mathrm{APB}, \angle \mathrm{A}+\angle \mathrm{P}+\angle \mathrm{B}=180^{\circ}$ [by angle sum property of a triangle is 180́․
or, $90^{\circ}+\angle P+90^{\circ}=180^{\circ}$
or, $\angle P=0^{0}$
So, lines n and m coincide.
Hence, only one perpendicular line can be drawn through a given point.

Question 5: Prove that two lines that are respectively perpendicular to two intersecting lines intersect each other.

Answer: Given Let lines, I and m are two intersecting lines. Again, let n and p be another two lines that are perpendicular to the intersecting lines meet at point D.

To prove Two lines n and p intersecting at a point.
Proof Suppose we consider lines n and p are not intersecting, then it means they are parallel to each other i.e., $n \| p$...(i)
Since, lines n and pare perpendicular to m and I , respectively.
But from Eq. (i) $n \| p$ it implies that I || m.
Hence, it is a contradiction.
Thus, our assumption is wrong.
Therefore, lines n and p intersect at a point.

[^0]: Proof: In the figure, BA || ED or BA || DP
 Therefore, $\angle A B P=\angle E P C$. \qquad

 $$
 \begin{equation*}
 \text { or, } \angle A B C=\angle E P C \text {. } \tag{1}
 \end{equation*}
 $$

 Again, BC || EF or PC || EF
 Therefore, $\angle D E F=\angle E P C$ \qquad [Corresponding angles] (2)
 From eq (1) and (2),
 $\angle A B C=\angle D E F$

