Chapter 8: Quadrilaterals
 Exercise 8.1 (MCQ)

Question 1: Question 1:

Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°, then the fourth angle is
(a) 90°
(b) 95°
(c) 105°
(d) 120°

Answer: (d) Given, $\angle \mathrm{A}=75^{\circ}, \angle \mathrm{B}=90^{\circ}$ and $\angle \mathrm{C}=75^{\circ}$
We know that the sum of all the1 angles of a quadrilateral is 360°.
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
$\Rightarrow 75^{\circ}+90^{\circ}+75^{\circ}+\angle \mathrm{D}=360^{\circ}$
$\angle \mathrm{D}=360^{\circ}-\left(75^{\circ}+90^{\circ}+75^{\circ}\right)$
$=360^{\circ}-240^{\circ}=120^{\circ}$
Hence, the fourth angle of a quadrilateral is 120°.

Question 2:

A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute angle between the diagonals is
(a) 55°
(b) 50°
(c) 40°
(d) 25°

Answer: (b)
We know that the diagonals of a rectangle are equal in length.

$A C=B D$
or, ${ }_{2}^{1} \mathrm{AC}=\frac{1}{2} \mathrm{BD}$ [Dividing both sides by 2]
or, $O A=O B$ [O is the mid-point of $A C$ and $B D$]
$\angle 2=\angle 1=25^{\circ}$ [Angle opposite to equal sides are equal]
hence, $\angle 3=\angle 1+\angle 2=25^{\circ}+25^{\circ}=50^{\circ}$

Question 3:

$A B C D$ is a rhombus such that $\angle A C B=40^{\circ}$, then $\angle A D B$ is
(a) 40°
(b) 45°
(c) 50°
(d) 60°

Solution:

(c) Given, $A B C D$ is a rhombus such that $\angle A C B=40^{\circ} \Rightarrow \angle O C B=40^{\circ}$

Since,

$$
A D \| B C
$$

$$
\angle D A C=\angle B C A=40^{\circ} \quad \text { [alternate interior angles] }
$$

Also,
$\angle A O D=90^{\circ}$
[diagonals of a rhombus are perpendicular to each other]

We know that, sum of all angles of a triangle $A D O$ is 180°.

$$
\begin{aligned}
\therefore & \therefore & \angle A D O+\angle D O A+\angle O A D & =180^{\circ} \\
\therefore & & \angle A D O & =180^{\circ}-\left(40^{\circ}+90^{\circ}\right) \\
& & & =180^{\circ}-130^{\circ}=50^{\circ} \\
\Rightarrow & & \angle A D B & =50^{\circ}
\end{aligned}
$$

Question 4:

The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS, taken in order, is a rectangle, if
(a) PQRS is a rectangle
(b) PQRS is a parallelogram
(c) diagonals of PQRS are perpendicular
(d) diagonals of PQRS are equal

Answer: (c) Since the quadrilateral ABCD formed by joining the mid-points of quadrilateral $P Q R S$ is a rectangle.
$A C=B D$ [since diagonals of a rectangle are equal]
or, $\mathrm{PQ}=\mathrm{QR}$
Thus, quadrilateral PQRS is a rhombus.

Hence, diagonals of PQRS i.e., PR and QS are perpendiculars [Since diagonals of a rhombus are perpendicular to each other]

Question 5:

The quadrilateral formed by joining the mid-points of the side of quadrilateral PQRS, taken in order, is a rhombus, if
(a) PQRS is a rhombus
(b) PQRS is a parallelogram
(c) diagonals of PQRS are perpendicular
(d) diagonals of PQRS are equal

Answer: (d) Given, the quadrilateral $A B C D$ is a rhombus. So, sides $A B, B C, C D$ and $A D$ are equal.

Now, in triangle PQS, we have
D and C are the mid-points of $P Q$ and $P S$.
So, $D C=\frac{1}{2} Q S$ [by mid-point theorem]
Similarly, in Triangle $\mathrm{PSR}, \mathrm{BC}=\frac{1}{2} \mathrm{PR}$
As, $B C=D C[A B C D$, is a rhombus]
Hence, ${ }_{2}^{1} \mathrm{QS}=\frac{1}{2} \mathrm{PR}$
or, QS = PR
Diagonals are equal.

Question 6:

If angles A, B, C and D of the quadrilateral $A B C D$, taken in order are in the ratio 3:7:6:4, then $A B C D$ is a
(a) rhombus
(b) parallelogram
(c) trapezium
(d) kite

Answer: (c) Given, the ratio of angles of quadrilateral ABCD is 3:7:6:4.
Let angles of quadrilateral $A B C D$ be $3 x, 7 x, 6 x$ and $4 x$, respectively. We know that the sum of all angles of a quadrilateral is 360°.
$3 x+7 x+6 x+4 x=360^{\circ}$
or, $20 x=360^{\circ}$
or, $x=360^{\circ} / 20^{\circ}=18^{\circ}$

Angles of the quad. are
$\angle A=3 \times 18=54^{\circ}$
$\angle B=7 \times 18=126^{\circ}$
$\angle C=6 \times 18=108^{0}$
$\angle D=4 \times 18=72^{\circ}$

from figure, $\angle B C E=180^{\circ}-\angle B C D$
$\angle B C E=180^{\circ}-108^{\circ}=72^{\circ}$

As the corresponding angles are equal, BC \|AD
now, the sum of interior angles,
$\angle A+\angle B=126^{\circ}+54^{\circ}=180^{\circ}$
$\angle C+\angle D=108^{\circ}+72^{\circ}=180^{\circ}$

Hence, $A B C D$ is a trapezium

Question 7:

If bisectors of $\angle A$ and $\angle B$ of a quadrilateral $A B C D$ intersect each other at P, of
$\angle B$ and $\angle C$ at Q, of $\angle C$ and $\angle D$ at R and of $\angle D$ and $\angle A$ at S, then PQRS is a
(a) rectangle
(b) rhombus
(c) parallelogram
(d) quadrilateral whose opposite angles are supplementary

Answer:
(d) Given, $A B C D$ is a quadrilateral and all angles bisectors form a quadrilateral $P Q R S$.

We know that, sum of all angles in a quadrilateral is 360°.

$$
\therefore \quad \angle A+\angle B+\angle C+\angle D=360^{\circ}
$$

On dividing both sides by 2 , we get

$$
\begin{align*}
& \frac{1}{2}(\angle A+\angle B+\angle C+\angle D)=\frac{360^{\circ}}{2} \\
& \Rightarrow \quad \angle P A B+\angle P B A+\angle R C D+\angle R D C=180^{\circ} \tag{i}
\end{align*}
$$

[since, $A P$ and $P B$ are the bisectors of $\angle A$ and $\angle B$ respectively also $R C$ and $R D$ are the bisectors of $\angle C$ and $\angle D$ respectively]
Now, in $\triangle A P B$,

$$
\begin{align*}
& \angle P A B+\angle A B P+\angle B P A=180^{\circ} \\
& \quad[\text { by angle sum property of a triangle] } \\
\Rightarrow \quad & \angle P A B+\angle A B P=180^{\circ}-\angle B P A \tag{i}
\end{align*}
$$

Similarly in $\triangle R D C$,

$$
\angle R D C+\angle D C R+\angle C R D=180^{\circ}
$$

[by angle sum property of a triangle]
$\Rightarrow \quad \angle R D C+\angle D C R=180^{\circ}-\angle C R D$
On substituting the value Eqs. (ii) and (iii) in Eq. (i), we get

$$
\begin{align*}
& & 180^{\circ}-\angle B P A+180^{\circ}-\angle D R C & =180^{\circ} \tag{iii}\\
\Rightarrow & & \angle B P A+\angle D R C & =180^{\circ} \\
\Rightarrow & & \angle S P Q+\angle S R Q & =180^{\circ}
\end{align*}
$$

$$
[\because \angle B P A=\angle S P Q \text { and } \angle D R C=\angle S R Q \text { vertically opposite angles }]
$$

Hence, $P Q R S$ is a quadrilateral whose opposite angles are supplementary.

Question 8:

If APB and CQD are two parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form
(a) a square
(b) a rhombus
(c) a rectangle
(d) any other parallelogram

Answer:
(c) Given, $A P B$ and $C Q D$ are two parallel lines.

Let the bisectors of angles $A P Q$ and CQP meet at a point M and bisectors of angles $B P Q$ and $P Q D$ meet at a point N.
Join $P M, M Q, Q N$ and $N P$.
Since,

$$
\begin{gathered}
A P B \| C Q D \\
\angle A P Q=\angle P Q D
\end{gathered}
$$

Then,
[alternate interior angles]

$$
\Rightarrow \quad \angle M P Q=2 \angle N Q P
$$

[since, $P M$ and $N Q$ are the angle bisectors of $\angle A P Q$ and $\angle D Q P$ respectively]
$\Rightarrow \quad \angle M P Q=\angle N Q P \quad$ [dividing both sides by 2] [since, alternate interior angles are equal.]
$\therefore \quad P M \| Q N$
Similarly,
$\angle B P Q=\angle C Q P$
[alternate interior angles]
\therefore
$P N \| Q M$
So, quadrilateral $P M Q N$ is a parailelogram.

\because	$\angle C Q D=180^{\circ}$
\Rightarrow	$\angle C Q P+\angle D Q P=180^{\circ}$
\Rightarrow	$2 \angle M Q P+2 \angle N Q P=180^{\circ}$
\Rightarrow	[since, MQ and $N Q$ are the
\Rightarrow	$2(\angle M Q P+\angle N Q P)=180^{\circ}$
\Rightarrow	$\angle M Q N=90^{\circ}$

Hence, $P M Q N$ is a rectangle.

Question 9:

The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is
(a) a rhombus
(b) a rectangle
(c) a square
(d) any parallelogram

Solution:

(b) Let $A B C D$ be a rhombus in which P, Q, R and S are the mid-points of sides $A B, B C, C D$ and $D A$, respectively.

Join $A C, P R$ and $S Q$
In $\triangle A B C, P$ is the mid-point of $A B$ and Q is the mid-point of $B C$.
$\Rightarrow \quad P Q \| A C$ and $P Q=\frac{1}{2} A C \quad$ [by using mid-point theorem] \ldots (i)
Similarly, in $\triangle D A C$,

$$
\begin{equation*}
S R \| A C \text { and } S R=\frac{1}{2} A C \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii),

$$
P Q \| S R \text { and } P Q=S R
$$

So, $P Q R S$ is a parallelogram.
Also, $A B Q S$ is a parallelogram.

$$
\begin{equation*}
\Rightarrow \quad A B=S Q \tag{iii}
\end{equation*}
$$

[opposite sides of a parallelogram are equal]
Similarly, $P B C R$ is a parallelogram.

\Rightarrow	$B C=P R$ [opposite sides of a parallelogram are equal]	
\Rightarrow	$A B=P R$	$[\because B C=A B$ sides of a rombus]
\Rightarrow	$S Q=P R$	[from Eq. (iii)]

So, the diagonals of a parallelogram are equal.
Hence, $P Q R S$ is a rectangle.

Question 10:

D and E are the mid-points of the sides $A B$ and $A C$ of $\triangle A B C$ and 0 is any point on side $B C$. 0 is joined to A. If P and Q are the mid-points of $O B$ and $O C$ respectively, then DEQP is
(a) a square
(b) a rectangle
(c) a rhombus
(d) a parallelogram

Answer: (d) In $\triangle A B C$, D and E are the mid-points of sides $A B$ and $A C$, respectively.
By mid-point theorem,
DE || BC
$D E=1 / 2 B C$

Then $D E=\frac{1}{2}[B P+P O+O Q+Q C]$
$D E=\frac{1}{2}[2 P O+2 O Q] \quad[$ since, P and Q are the mid-points of $O B$ and $O C$ respectively] or, $D E=P O+O Q$
or, $D E=P Q$

Now in triangle $A O C, Q$ and E are the mid-points of $O C$ and $A C$ respectively. Thus, $\mathrm{EQ} \| \mathrm{AO}$ and $\mathrm{EQ}=\frac{1}{2} \mathrm{AO}$ [By midpoints theorem]
Similarly, in triangle $A B O, P D \| A O$ and $P D=\frac{1}{2} A O$ [by mid-point theorem] $\ldots \ldots$.(4)

From eq(3) and (4), EQ \|PD and EQ = PD
From eq(1) and (2) DE \|BC and DE \|PQ
Hence, DEQP is a parallelogram.
Question 11:
The figure formed by joining the mid-points of the sides of a quadrilateral ABCD, taken in order, is a square only, if
(a) ABCD is a rhombus
(b) diagonals of ABCD are equal
(c) diagonals of $A B C D$ are equal and perpendicular
(d) diagonals of $A B C D$ are perpendicular

Answer:

(c) Given, $A B C D$ is a quadrilateral and P, Q, R and S are the mid-points of sides of $A B, B C$, $C D$ and $D A$, respectively. Then, $P Q R S$ is a square.
$\therefore \quad P Q=Q R=R S=P S$
and $\quad P R=S Q$
But
$P R=B C$ and $S Q=A B$
$\therefore \quad A B=B C$
Thus, all the sides of quadrilateral $A B C D$ are equal.
Hence, quadrilateral $A B C D$ is either a square or a rhombus.
Now, in $\triangle A D B$, use mid-point theorem

$$
S P \| D B
$$

and

$$
\begin{equation*}
S P=\frac{1}{2} D B \tag{ii}
\end{equation*}
$$

Similarly in $\triangle A B C$ (by mid-point theorem) $P Q \| A C$ and $P Q=\frac{1}{2} A C$
From Eq. (i),

$$
\begin{equation*}
P S=P Q \tag{iii}
\end{equation*}
$$

$\frac{1}{2} D B=\frac{1}{2} A C$
[from Eqs. (ii) and (iii)]
\Rightarrow

$$
D B=A C
$$

Thus, diagonals of $A B C D$ are equal and therefore quadrilateral $A B C D$ is a square not rhombus. So, diagonals of quadrilateral are also perpendicular.

Question 12:

The diagonals AC and BD of a parallelogram ABCD intersect each other at point 0 . If $\angle D A C=32^{\circ}$ and $\angle A O B=70^{\circ}$, then $\angle D B C$ is equal to
(a) 24°
(b) 86°
(c) 38°
(d) 32°

Answer:
(c) Given, $\angle A O B=70^{\circ}$ and $\angle D A C=32^{\circ}$

$$
\begin{array}{lrrr}
\therefore & \angle A C B & =32^{\circ} & {[A D \| B C \text { and } A C \text { is transversal] }} \\
\text { Now, } & \angle A O B+\angle B O C=180^{\circ} & \text { [linear pair axiom] } \\
\Rightarrow & \angle B O C=180^{\circ}-\angle A O B=180^{\circ}-70^{\circ}=110^{\circ}
\end{array}
$$

Now, in $\triangle B O C$, we have

$$
\begin{array}{rlrl}
& & \angle B O C+\angle B C O+\angle O B C & =180^{\circ} \quad \text { [by angle sum property of a triangle] } \\
\Rightarrow & 110^{\circ}+32^{\circ}+\angle O B C & =180^{\circ} \quad\left[\because \angle B C O=\angle A C B=32^{\circ}\right] \\
\Rightarrow & \angle O B C & =180^{\circ}-\left(110^{\circ}+32^{\circ}\right)=38^{\circ} \\
\therefore & \angle D B C & =\angle O B C=38^{\circ}
\end{array}
$$

Question 13:
Which of the following is not true for a parallelogram?
(a) Opposite sides are equal
(b) Opposite angles are equal
(c) Opposite angles are bisected by the diagonals
(d) Diagonals bisect each other

Answer: (c) We know that, in a parallelogram, opposite sides are equal, opposite angles are equal, opposite angles are not bisected by the diagonals and diagonals bisect each other.

Question 14:
D and E are the mid-points of the sides $A B$ and $A C$, respectively, of $\triangle A B C$. $D E$ is produced to F. To prove that CF is equal and parallel to DA, we need additional information that is
(a) $\angle \mathrm{DAE}=\angle \mathrm{EFC}$
(b) $A E=E F$
(c) $\mathrm{DE}=\mathrm{EF}$
(d) $\angle A D E=\angle E C F$

Solution:
(c) In $\triangle A D E$ and $\triangle C F E$, suppose $D E=E F$

Now,
Suppose
and
$\therefore \quad \triangle A D E \cong \triangle C F E$
$\therefore \quad A D=C F$
and
Hence,

$$
A E=C E
$$

[since, E is the mid-point of $A C$]

Therefore, we need an additional information which is $D E=E F$

Exercise 8.2: Very Short Answer Type Questions

Question 1:

Diagonals AC and BD of a parallelogram ABCD intersect each other at O. If OA $=3 \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$, determine the lengths of $A C$ and BD.

Solution:

Given, $A B C D$ is a parallelogram $O A=3 \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$

We know that, diagonals of a parallelogram bisect each other.

```
\therefore Diagonal AC=2OA =6 cm [\becauseAO =OC]
and Diagonal }BD=2OD=4\textrm{cm}][\becauseBO=OD
```

Hence, the length of the diagonals $A C$ and $B D$ are 6 cm and 4 cm , respectively.

Question 2:

Diagonals of a parallelogram are perpendicular to each other. Is this statement true? Give a reason for your answer.

Answer: No, diagonals of a parallelogram are not perpendicular to each other, because they only bisect each other.

Question 3:

Can the angles $110^{\circ}, 80^{\circ}, 70^{\circ}$ and 95° be the angles of a quadrilateral? Why or why not?
Answer: No, we know that the sum of all angles of a quadrilateral is 360°.
Here, sum of the angles $=110^{\circ}+80^{\circ}+70^{\circ}+95^{\circ}=355^{\circ} \neq 360^{\circ}$
So, these angles cannot be the angles of a quadrilateral.

Question 4: In quadrilateral $A B C D, \angle A+\angle D=180^{\circ}$. What special name can be given to this quadrilateral?

Answer:
It is a trapezium because the sum of the interior angles is 180°.

Question 5: All the angles of a quadrilateral are equal. What special name is given to this quadrilateral?

Answer: We know that the sum of all angles in a quadrilateral is 360°.
If $A B C D$ is a quadrilateral,
$\angle A+\angle B+\angle C+\angle D=360^{\circ}$
But it is given all angles are equal.
$\angle A=\angle B=\angle C=\angle D$ From Eq.(1)
$\angle A+\angle A+\angle A+\angle A=360^{\circ}$
or, $4 \angle A=360^{\circ}$
$\angle A=90^{\circ}$
So, all angles of a quadrilateral are 90°.
Hence, the given quadrilateral is a rectangle.

Question 6:

The diagonals of a rectangle are equal and perpendicular. Is this statement true? Give a reason for your answer.

Answer: No, the diagonals of a rectangle are equal but need not be perpendicular.

Question 7:

Can all the four angles of a quadrilateral be obtuse? Give a reason for your answer.

Answer: No, all the four angles of a quadrilateral cannot be obtuse. As the sum of the angles of a quadrilateral is 360°, they may have a maximum of three obtuse angles.

Question 8:

In $\triangle A B C, A B=5 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$. If D and E are respectively the mid-points of $A B$ and $B C$, determine the length of $D E$.

Answer: $\ln \triangle A B C$, we have $A B=5 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $C A=7 \mathrm{~cm}$. Since, D and E are the mid-points of $A B$ and $B C$, respectively.
By mid-point theorem, DE || AC
and $D E=\frac{1}{2} \mathrm{AC}=\frac{7}{2}=3.5 \mathrm{~cm}$

Question 9:

In the figure, it is given that BDEF and FDCE are parallelograms. Can you say that $B D=C D$? Why or why not?

Answer: Yes, in the given figure, BDEF is a parallelogram
$\therefore \mathrm{BD} \| \mathrm{EF}$ and $\mathrm{BD}=\mathrm{EF}$
Also, FDCE is a parallelogram.
$\therefore \mathrm{CD}|\mid \mathrm{EF}$
and $C D=E F$
From Eqs. (1) and (2), $\mathrm{BD}=\mathrm{CD}=\mathrm{EF}$

Question 10:

In the figure, $A B C D$ and $A E F G$ are two parallelograms. If $\angle C=55^{\circ}$, then determine $\angle F$.

Answer:
We have, $A B C D$ and AEFG are two parallelograms and $\angle C=55^{\circ}$. Since $A B C D$ is a parallelogram, then opposite angles of a parallelogram are equal.
$\angle A=\angle C=55^{\circ} \ldots$ (i)
Also, AEFG is a parallelogram.
$\therefore \angle \mathrm{A}=\angle \mathrm{F}=55^{\circ}$ [from Eq. (i)]

Question 11:

Can all the angles of a quadrilateral be acute? Give a reason for your answer.
Answer: No, all the angles of a quadrilateral cannot be acute. As the sum of the angles of a quadrilateral is 360°. So, a maximum of three acute angles will be possible.

Question 12:

Can all the angles of a quadrilateral be right angles? Give a reason for your answer.

Answer: Yes, all the angles of a quadrilateral can be right angles. In this case, the quadrilateral becomes a rectangle or square.

Question 13:

Diagonals of a quadrilateral $A B C D$ bisect each other. If $\angle A=35^{\circ}$, determine $\angle B$. Answer: Since diagonals of a quadrilateral bisect each other, so it is a parallelogram. Therefore, the sum of interior angles between two parallel lines is 180° i.e., $\angle A+\angle B=180^{\circ}$
or, $\angle B=180^{\circ}-\angle A=180^{\circ}-35^{\circ}\left[\therefore \angle A=35^{\circ}\right.$, given $]$
or, $\angle B=145^{\circ}$

Question 14:

Opposite angles of a quadrilateral $A B C D$ are equal. If $A B=4 \mathbf{c m}$, determine $C D$.
Answer: Given, the opposite angles of a quadrilateral are equal. So, ABCD is a parallelogram and we know that in a parallelogram opposite sides are also equal.
$\therefore C D=A B=4 \mathrm{~cm}$

Exercise 8.3: Short Answer Type Questions

Question 1:

One angle of a quadrilateral is 108° and the remaining three angles are equal.
Find each of the three equal angles.
Thinking Process
The sum of all the angles In a quadrilateral is 360°, use this result and simplify it.

Answer: Let each of the three equal angles be x°.
Now, the sum of angles of a quadrilateral $=360^{\circ}$
or, $108^{\circ}+x^{\circ}+x^{\circ}+x^{\circ}=360^{\circ}=>3 x^{\circ}=360^{\circ}-108^{\circ}$
$x^{\circ}=252^{\circ} / 3$
or, $x^{\circ}=84^{\circ}$
hence, $x^{\circ}=84^{\circ}$
Hence, each of the three equal angles is 84°.

Question 2:

$A B C D$ is a trapezium in which $A B\left|\mid D C\right.$ and $\angle A=\angle B=45^{\circ}$. Find angles C and D of the trapezium.

Answer: Given, $A B C D$ is a trapezium and whose parallel sides in the figure are $A B$ and DC.

Since $A B \| C D$ and $B C$ is transversal, then the sum of two co-interior angles is 180°.

$\angle B+\angle C=180^{\circ}$
or, $\angle C=180^{\circ}-\angle B=180^{\circ}-45^{\circ}\left[\angle B=45^{\circ}\right.$, Given]
$\angle C=135^{\circ}$
Similarly, $\angle A+\angle D=180^{\circ}$ [Sum of the co-interior angles ins 180°]
or, $\angle D=180^{\circ}-45^{\circ}$
or, $\angle D=135^{\circ}$

Question 3:

The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.

Answer: Let the parallelogram be $A B C D$, in which $\angle A D C$ and $\angle A B C$ are obtuse angles. Now, DE and DF are two altitudes of a parallelogram and the angle between them is 60°.

Now, $B E D F$ is a quadrilateral, in which $\angle B E D=\angle B F D=90^{\circ}$

$$
\therefore \quad \begin{aligned}
\angle F B E & =360^{\circ}-(\angle F D E+\angle B E D+\angle B F D) \\
& =360^{\circ}-\left(60^{\circ}+90^{\circ}+90^{\circ}\right) \\
& =360^{\circ}-240^{\circ}=120^{\circ}
\end{aligned}
$$

Since, $A B C D$ is a parallelogram.

Hence, angles of the parallelogram are $60^{\circ}, 120^{\circ}, 60^{\circ}$ and 120°, respectively.

Question 4:

$A B C D$ is a rhombus in which altitude from D to side $A B$ bisects $A B$. Find the angles of the rhombus.
Answer:
Let sides of a rhombus be

$$
A B=B C=C D=D A=\boldsymbol{x}
$$

Now, join DB.

In $\triangle A L D$ and $\triangle B L D$,

$$
\angle D L A=\angle D L B=90^{\circ}
$$

[since, $D L$ is a perpendicular bisector of $A B$]

$$
A L=B L=\frac{x}{2}
$$

and

$$
D L=D L
$$

[common side]
\therefore

$$
\begin{aligned}
\triangle A L D & \cong \triangle B L D \\
A D & =B D
\end{aligned}
$$

[by SAS congruence rule]
[by CPCT]

Now, in $\triangle A D B$,

$$
A D=A B=D B=x
$$

Then, $\triangle A D B$ is an equilateral triangle.
$\therefore \quad \angle A=\angle A D B=\angle A B D=60^{\circ}$
Similarly, $\triangle D B C$ is an equilateral triangle.

\therefore	$\angle C=\angle B D C=\angle D B C=60^{\circ}$
Also,	$\angle A=\angle C$
\therefore	$\angle D=\angle B=180^{\circ}-60^{\circ}=120^{\circ} \quad$ [since, sum of interior angles is 180°]

Question 5:

E and F are points on diagonal $A C$ of a parallelogram $A B C D$ such that $A E=C F$. Show that BFDE is a parallelogram.

Answer:
Given $A B C D$ is a parallelogram and $A E=C F$
To show $\quad O E=O F$
Construction Join $B D$, meet $A C$ at point O.
Proof Since, diagonals of a parallelogram bisect each other.

\therefore	$O A$	$=O C$
and	$O D$	$=O B$
Now,	$O A$	$=O C$
and	$A E$	$=C F$
\Rightarrow	$O A-A E$	$=O C-C F$
\Rightarrow	$O E$	$=O F$

Thus, $B F D E$ is a quadrilateral whose diagonals bisect each other.
Hence, $B F D E$ is a parallelogram.

[given]

Hence proved.

Question 6:

E is the mid-point of the side $A D$ of the trapezium $A B C D$ with $A B \mid$
DC. A line

through E drawn parallel to $A B$ intersects $B C$ at F. Show is the mid-point of BC.
 Thinking Process
 Use the mid-point theorem i.e., the line segment joining the mid-points of two sides of a triangle is parallel to the third side and half of it. Further shown the required result.

Answer: Given $A B C D$ is a trapezium in which $A B|\mid D C$ and $E F \| A B| \mid C D$.
Construction Join, the diagonal AC which intersects EF at O.
To show F is the mid-point of $B C$.

Proof Now, in $\triangle A D C, E$ is the mid-point of $A D$ and $O E \| C D$. Thus, by mid-point theorem, O is the mid-point of $A C$.
Now, in $\triangle C B A, 0$ is the mid-point of $A C$ and $O F \| A B$.
So, by mid-point theorem, F is the mid-point of $B C$.

Question 7:

Through A, B and C lines RQ, PR and QP have been drawn, respectively parallel to sides $B C, C A$ and $A B$ of a $\triangle A B C$ as shown in the figure. Show that $B C=1 / 2$ QR

Answer:

Given In $\triangle A B C, P Q$ || $A B$ and $P R|\mid A C$ and $R Q| \mid B C$.
To show $B C=1 / 2 Q R$
Proof In quadrilateral BCAR, $\mathrm{BR}|\mid \mathrm{CA}$ and BC$| \mid \mathrm{RA}$
So, quadrilateral, BCAR is a parallelogram.
$B C=A R$
Now, in quadrilateral BCQA, BC \|AQ
and $A B \| Q C$
So, quadrilateral BCQA is a parallelogram,
$B C=A Q$
On adding Eqs. (1) and (2), we get
$2 B C=A R+A Q$
or, $2 B C=R Q$
or, $B C=1 / 2 Q R$
Now, BEDF is a quadrilateral, in which $\angle B E D=\angle B F D=90^{\circ}$
$\angle \mathrm{FSE}=360^{\circ}-(\angle \mathrm{FDE}+\angle \mathrm{BED}+\angle \mathrm{BFD})=360^{\circ}-\left(60^{\circ}+90^{\circ}+90^{\circ}\right)$ $=360^{\circ}-240^{\circ}=120^{\circ}$

Question 8:

D, E and F are the mid-points of the sides $B C, C A$ and $A B$, respectively of an equilateral $\triangle A B C$. Show that $\triangle D E F$ is also an equilateral triangle.

Answer: Given In equilateral $\triangle A B C, D, E$ and F are the mid-points of sides $B C, C A$ and $A B$, respectively.
To show $\triangle D E F$ is an equilateral triangle.

Proof Since in $\triangle A B C, E$ and F are the mid-points of $A C$ and $A B$ respectively, then $E F$ || $B C$ and
$E F=1 / 2 B C$
DF || AC, DE || AB
$D E=1 / 2 A B$ and $F D=1 / 2 A C$ [by mid-point theorem]
since $\triangle A B C$ is an equilateral triangle
$A B=B C=C A$
or, $1 / 2 A B=1 / 2 B C=1 / 2 C A$ [dividing by 2]
or, $\mathrm{DE}=\mathrm{EF}=\mathrm{FD}$ [from Eqs. (1) and (2)]
Thus, all sides of ADEF are equal.
Hence, $\triangle D E F$ is an equilateral triangle.
Hence proved.

Question 9:

Points P and Q have been taken on opposite sides $A B$ and CD, respectively of a parallelogram $A B C D$ such that $A P=C Q$. Show that $A C$ and $P Q$ bisect each other.

Solution:

Given $A B C D$ is a parallelogram and $A P=C Q$
To show $A C$ and $P Q$ bisect each other.

Proof in $\triangle A M P$ and $\triangle C M Q$,

$$
\begin{aligned}
\angle M A P & =\angle M C Q \\
A P & =C Q \\
\angle A P M & =\angle C Q M \\
\triangle A M P & \equiv \triangle C M Q \\
A M & =C M \\
P M & =M Q
\end{aligned}
$$

[alternate interior angles]
[given]
[alternate interior angles] [by ASA congruence rule] [by CPCT rule] [by CPCT rule]
and Hence proved.

Question 10:

In the figure, P is the mid-point of side $B C$ of a parallelogram $A B C D$ such that $\angle B A P=\angle D A P$. Prove that $A D=2 C D$.

answer:
Given In a parallelogram $A B C D, P$ is a mid-point of $B C$ such that $\angle B A P=\angle D A P$.
To prove

$$
A D=2 C D
$$

Proof Since, $A B C D$ is a parallelogram.
So, $A D \| B C$ and $A B$ is transversal, then

$$
\begin{align*}
& \angle A+\angle B=180^{\circ} \\
& \text { [sum of cointerior angles is } 180^{\circ} \text {] } \\
& \Rightarrow \quad \angle B=180^{\circ}-\angle A \tag{i}\\
& \text { In } \triangle A B P \text {. } \quad \angle P A B+\angle B+\angle B P A=180^{\circ} \quad \text { [by angle sum property of a triangle] } \\
& \Rightarrow \\
& \frac{1}{2} \angle A+180^{\circ}-\angle A+\angle B P A=180^{\circ} \\
& \Rightarrow \\
& \angle B P A-\frac{\angle A}{2}=0 \\
& \Rightarrow \\
& \angle B P A=\frac{\angle A}{2} \tag{ii}\\
& \Rightarrow \quad \angle B P A=\angle B A P \\
& \Rightarrow \quad A B=B P \text { [opposite sides of equal angles are equal] }
\end{align*}
$$

On multiplying both sides by 2 , we get

$2 A B=2 B P$		
\Rightarrow	$2 A B=B C$	[since P is the mid-point of $B C$]
\Rightarrow	$2 C D=A D$	
	[since, $A B C D$ is a parallelogram, then $A B=C D$ and $B C=A D]$	

Exercise 8.4: Long Answer Type Questions

Question 1:

A square is inscribed in an isosceles right triangle so that the square and the triangle have one angle common. Show that the vertex of the square opposite the vertex of the common angle bisects the hypotenuse.

```
Answer: Given In isosceles triangle \(A B C\), a square \(\triangle D E F\) is inscribed.
To prove CE = BE
Proof In an isosceles \(\triangle A B C, \angle A=90^{\circ}\)
and \(A B=A C\)
Since \(\triangle D E F\) is a square.
\(A D=A F\) [all sides of the square are equal]
On subtracting Eq. (2) from Eq. (1), we get
\(A B-A D=A C-A F\)
```

$B D=C F$
Now in triangle CFE and BDE,

BD = CF [from eq (3)]
$D E=E F$ [sides of an sq.]
and $\angle \mathrm{CFE}=\angle \mathrm{EDB}$ [each 90°]
$\triangle \mathrm{CFE} \cong \triangle \mathrm{BDE}$ [SAS]
$C E=B E[C P C T]$
Hence, vertex E of the square bisects the hypotenuse $B C$.

Question 2:

In a parallelogram $A B C D, A B=10 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$. The bisector of $\angle A$ meets $D C$ in E. $A E$ and $B C$ produced meet at F. Find the length of CF.

Answer: Given, a parallelogram $A B C D$ in which $A B=10 \mathrm{~cm}$ and $A D=6 \mathrm{~cm}$.
Now, draw a bisector of $\angle A$ meets $D C$ in E and produce it to F and produce $B C$ to
meet at F.

Also, produce $A D$ to H and join $H F$, so that $A B F H$, is a parallelogram.

Since,	$H F \\| A B$	
\therefore	$\angle A F H=\angle F A B$	[alternate interior angles]
	$\angle H A F=\angle F A B$	[since, $A F$ is the bisector of $\angle A$]
\Rightarrow	$\angle H A F=\angle A F H$	[from Eq. (i)]
\Rightarrow	$H F=A H \quad$ [sides opposite to equal angles are equal]	
But	$H F=A B=10 \mathrm{~cm}$	
\therefore	$A H=H F=10 \mathrm{~cm}$	
\Rightarrow	$A D+D H=10 \mathrm{~cm}$	
\Rightarrow	$D H=(10-6) \mathrm{cm}$	
\therefore	$D H=4 \mathrm{~cm}$	

Since, CFHD is a parallelogram.
Therefore, opposite sides are equal.

$$
\therefore \quad D H=C F=4 \mathrm{~cm}
$$

Question 3:

P, Q, R and S are respectively the mid-points of the sides $A B, B C, C D$ and $D A$ of a quadrilateral $A B C D$ in which $A C=B D$. Prove that PQRS is a rhombus, Thinking Process
Firstly, use the mid-point theorem in various triangles of a quadrilateral.
Further show that the line segments formed by joining the mid-points are equal, which prove the required quadrilateral.

Answer: Given In a quadrilateral $A B C D, P, Q, R$ and S are the mid-points of sides
$A B, B C, C D$ and $D A$, respectively. Also, $A C=B D$ To prove $P Q R S$ is a rhombus.

Proof in $\triangle A D C, S$ and R are the mid-points of $A D$ and $D C$ respectively. Then, by mid-point theorem.

$$
\begin{equation*}
S R \| A C \text { and } S R=\frac{1}{2} A C \tag{i}
\end{equation*}
$$

In $\triangle A B C, P$ and Q are the mid-points of $A B$ and $B C$ respectively. Then, by mid-point theorem

$$
\begin{equation*}
P Q \| A C \text { and } P Q=\frac{1}{2} A C \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii),

$$
\begin{equation*}
S R=P Q=\frac{1}{2} A C \tag{iii}
\end{equation*}
$$

Similarly, in $\triangle B C D$,

$$
\begin{equation*}
R Q \| B D \text { and } R Q=\frac{1}{2} B D \tag{iv}
\end{equation*}
$$

And in $\triangle B A D$,

$$
\begin{equation*}
S P \| B D \text { and } S P=\frac{1}{2} B D \tag{v}
\end{equation*}
$$

From Eqs. (iv) and (v),

$$
S P=R Q=\frac{1}{2} B D=\frac{1}{2} A C
$$

$$
\text { [given, } A C=B D \text {] ...vi) }
$$

From Eqs. (iii) and (vi),

$$
S R=P Q=S P=R Q
$$

It shows that all sides of a quadrilateral $P Q R S$ are equal.
Hence, PQRS is a rhombus.

Hence proved.

Question 4:

P, Q, R and S are respectively the mid-points of the sides $A B, B C, C D$ and $D A$ of a quadrilateral $A B C D$ such that $A C \perp B D$. Prove that PQRS is a rectangle.

Answer: Given In quadrilateral $A B C D, P, O, S$ and S are the mid-points of the sides $A B, B C, C D$ and $D A$, respectively.
Also, $A C \perp B D$
To prove PQRS is a rectangle.
Proof Since, $A C \perp B D$.
$\angle C O D=\angle A O D=\angle A O B=\angle C O B=90^{\circ}$
In $\triangle A D C, S$ and R are the mid-points of $A D$ and $D C$ respectively, then by mid-point theorem

$$
\begin{equation*}
S R \| A C \text { and } S R=\frac{1}{2} A C \tag{i}
\end{equation*}
$$

In $\triangle A B C, P$ and Q are the mid-points of $A B$ and $B C$ respectively, then by mid-point theorem
$P Q \| A C$ and $P Q=\frac{1}{2} A C$
From Eqs. (i) and (ii), $P Q \| S R$ and $P Q=S R=\frac{1}{2} A C$
Similarly,

$$
\begin{equation*}
S P \| R Q \text { and } S P=R Q=\frac{1}{2} B D \tag{iii}
\end{equation*}
$$

Now, in quadrilateral $E O F R$,

$$
\begin{align*}
& O E\|F R, O F\| E R \tag{iv}\\
& \angle E O F=\angle E R F=90^{\circ}\left[\because \angle C O D=90^{\circ} \Rightarrow \angle E O F=90^{\circ}\right] \tag{v}
\end{align*}
$$

So, $P Q R S$ is a rectangle.
Hence proved.

Question 5:

P, Q, R and S are respectively the mid-points of sides $A B, B C, C D$ and $D A$ of quadrilateral $A B C D$ in which $A C=B D$ and $A C \perp B D$. Prove that $P Q R S$ is a square.

Answer: Given In quadrilateral ABCD, P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$, respectively.
Also, $A C=B D$ and $A C \perp B D$.
To prove PQRS is a square.
Proof Now, in $\triangle A D C, S$ and R are the mid-points of the sides $A D$ and $D C$ respectively, then by mid-point theorem,

$$
\begin{equation*}
S R \| A C \text { and } S R=\frac{1}{2} A C \tag{i}
\end{equation*}
$$

In $\triangle A B C, P$ and Q are the mid-points of $A B$ and $B C$, then by mid-point theorem,

$$
\begin{equation*}
P Q \| A C \text { and } P Q=\frac{1}{2} A C \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii), $\quad P Q \| S R$ and $P Q=S R=\frac{1}{2} A C$
Similarly, in $\triangle A B D$, by mid-point theorem,

$$
S P \| B D \text { and } S P=\frac{1}{2} B D=\frac{1}{2} A C
$$

[given, $A C=B D$]
and $\triangle B C D$, by mid-point theorem,

$$
\begin{equation*}
R Q \| B D \text { and } R Q=\frac{1}{2} B D=\frac{1}{2} A C \quad \text { [given, } B D=A C \text {]. } \tag{v}
\end{equation*}
$$

From Eqs. (iv) and (v),

$$
\begin{equation*}
S P=R Q=\frac{1}{2} A C \tag{vi}
\end{equation*}
$$

From Eqs. (iii) and (vi),

$$
P Q=S R=S P=R Q
$$

Thus, all four sides are equal.
Now, in quadrilateral OERF, $\quad O E \| F R$ and $O F \| E R$
$\therefore \quad \angle E O F=\angle E R F=90^{\circ}$
$\left[\because A C \perp D B \Rightarrow=\angle D O C=\angle E O F=90^{\circ}\right.$ as opposite angles of a parallelogram $]$
$\therefore \quad \angle Q R S=90^{\circ}$
Similarly,

$$
\angle R Q S=90^{\circ}
$$

So, PQRS is a square.
Hence proved.

Question 6:

A diagonal of a parallelogram bisects one of its angles. Show that it is a rhombus.

Solution:

Given Let $A B C D$ is a parallelogram and diagonal $A C$ bisects the angle A.

$\therefore \quad \angle C A B=\angle C A D$
To show $A B C D$ is a rhombus.
Proof Since, $A B C D$ is a parallelogram, therefore $A B \| C D$ and $A C$ is a transversal.
$\therefore \quad \angle C A B=\angle A C D \quad$ [alternate interior angles]
Again, $A D \| B C$ and $A C$ is a transversal.

\therefore	$\angle C A D=\angle A C B$	[alternate interior angles]
So,	$\angle A C D=\angle A C B$	[$\because \angle C A B=\angle C A D$, given] ...(ii)
Also,	$\angle A=\angle C$ [opposite angles of parallelogram are equal]	
\Rightarrow	$\frac{1}{2} \angle A=\frac{1}{2} \angle C$	[dividing both sides by 2]
\Rightarrow	$\angle D A C=\angle D C A$	[from Eqs. (i) and (ii)]
\Rightarrow	$C D=A D$	

But

$$
A B=C D \text { and } A D=B C
$$

[opposite sides of parallelogram are equal]
$\therefore \quad A B=B C=C D=A D$
Thus, all sides are equal. So, $A B C D$ is a rhombus.
Hence proved.

Question 7:

P and Q are the mid-points of the opposite sides $A B$ and CD of a parallelogram $A B C D$. AQ intersects DP at S and $B Q$ intersects $C P$ at R. Show that PRQS is a parallelogram.

Answer: Given In a parallelogram ABCD, P and Q are the mid-points of $A S$ and CD, respectively.
To show PRQS is a parallelogram.
Proof Since, ABCD is a parallelogram.
AB\|CD
or, AP || QC
Also, $A B=D C$

$\frac{1}{2} A B=\frac{1}{2} D C$
[since P and Q are mid-points of $A B$ ad DC]
Now, $A P \| Q C$ and $A P=Q C$.
Thus APCQ is a parallelogram.
Therefore, $A P \| P C$ or $S Q \| P R$
Again, $\quad A B|\mid D C$ or $B P| \mid D Q$

Also, $\mathrm{AB}=\mathrm{DC}$
or, $\frac{1}{2} A B=\frac{1}{2} D C$
$B P \| Q D$ and $B P=Q D$.
So, BPDQ is a parallelogram.
Therefore, $\mathrm{PD}|\mid \mathrm{BQ}$ or PS$| \mid \mathrm{QR}$
From eq (i) and (ii) $\quad S Q \| R P$ or PS || QR
So, PRQS is a parallelogram. (hence proved)

Question 8:

$A B C D$ is a quadrilateral in which $A B|\mid D C$ and $A D=B C$. Prove that $\angle A=\angle B$ and $\angle C=\angle D$.
Solution:
Given $A B C D$ is a quadrilateral such that $A B \| D C$ and $A D=B C$

Construction Extend $A B$ to E and draw a line $C E$ parallel to $A D$.
Proof Since, $A D \| C E$ and transversal $A E$ cuts them at A and E, respectively.
$\therefore \quad \angle A+\angle E=180^{\circ}$ [since, sum of cointerior angles is 180°]
$\Rightarrow \quad \angle A=180^{\circ}-\angle E$
Since, $\quad A B \| C D$ and $A D \| C E$
So, quadrilateral $A E C D$ is a parallelogram.

\Rightarrow	$A D=C E \Rightarrow B C=C E$	$[\because A D=B C$, given $]$
Now, in $\triangle B C E$	$C E=B C$	[proved above]
	$\angle C B E=\angle C E B$	
	[opposite angles of equal side are equal]	
\Rightarrow	$180^{\circ}-\angle B=\angle E$	$\left[\because \angle B+\angle C B E=180^{\circ}\right]$
\Rightarrow	$180^{\circ}-\angle E=\angle B$..(ii)
From Eqs. (i) and (ii),	$\angle A=\angle B$	Hence proved.

Question 9:

In figure, $A B||D E, A B=D E, A C|| D F$ and $A C=O F$. Prove that $B C|\mid E F$ and $B C$
= EF.

Answer: Given In figure $A B \| D E$ and $A C \| D F$, also $A B=D E$ and $A C=D F$ To prove $B C \| E F$ and $B C=E F$
Proof In quadrilateral $A B E D, A B \| D E$ and $A B=D E$
So, $A B E D$ is a parallelogram. $A D \| B E$ and $A D=B E$
Now, in quadrilateral ACFD, AC || FD and AC = FD
Thus, ACFD is a parallelogram.
AD || CF and AD = CF
From Eqs.(1) and (2), $\mathrm{AD}=\mathrm{BE}=\mathrm{CF}$ and $\mathrm{CF}|\mid \mathrm{BE}$
Now, in quadrilateral BCFE, BE = CF
and $\mathrm{BE}|\mid \mathrm{CF}$ [from Eq. (3)]
So, BCFE is a parallelogram. $B C=E F$ and $B C \| E F$. Hence proved.

Question 10:

E is the mid-point of a median $A D$ of $\triangle A B C$ and $B E$ is produced to meet $A C$ at F. Show that $A F=1 / 3 A C$.
Answer:
Given In a $\triangle A B C, A D$ is a median and E is the mid-point of $A D$.

Construction Draw DP\|EF.

Proof $\ln \triangle A D P, E$ is the mid-point of $A D$ and $E F \| D P$.
So, F is mid-point of $A P$.
[by converse of mid-point theorem]

In $\triangle F B C, D$ is mid-point of $B C$ and $D P \| B F$.
So, P is mid-point of $F C$.
$\begin{array}{ll}\text { Thus, } & A F=F P=P C \\ \therefore & A F\end{array}$
Hence proved.

Question 11:

Show that the quadrilateral formed by joining the consecutive sides of a square is also a square.

Solution:

Given In a square $A B C D, P, Q, R$ and S are the mid-points of $A B$,
$B C, C D$ and $D A$, respectively.
To show PQRS is a square.
Construction Join $A C$ and $B D$.
Proof Since, $A B C D$ is a square.
$\therefore \quad A B=B C=C D=A D$
Also, P, Q, R and S are the mid-points of $A B, B C, C D$ and $D A$, respectively.
Then, in $\triangle A D C$,
and
In $\triangle A B C$,
and

$$
S R \| A C
$$

$$
S R=\frac{1}{2} A C
$$

[by mid-point theorem] ...(i)

$$
P Q \| A C
$$

From Eqs. (i) and (ii),

$$
\begin{equation*}
S R \| P Q \text { and } S R=P Q=\frac{1}{2} A C \tag{iii}
\end{equation*}
$$

Similarly,

$$
S P \| B D \text { and } B D \| R Q
$$

\therefore
and

$$
S P \| R Q \text { and } S P=\frac{1}{2} B D
$$

,

$$
\begin{aligned}
R Q & =\frac{1}{2} B D \\
S P=R Q & =\frac{1}{2} B D
\end{aligned}
$$

Since, diagonals of a square bisect each other at right angle.

$$
\begin{array}{ll}
\therefore & A C=B D \\
\Rightarrow & S P=R Q=\frac{1}{2} A C
\end{array}
$$

From Eqs. (iii) and (iv),

$$
S \dot{R}=P Q=S P=R Q
$$

[all side are equal]
Now, in quadrilateral OERF,
$O E \| F R$ and $O F \| E R$
$\therefore \quad \angle E O F=\angle E R F=90^{\circ}$
Hence, PQRS is a square.
Hence proved.

Question 12:

E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium $A B C D$. Prove that $E F \| A B$ and $E F=1 / 2(A B+C D)$.
Answer:

Given $A B C D$ is a trapezium in which $A B \| C D$. Also, E and F are respectively the mid-points of sides $A D$ and $B C$.

Construction Join $B E$ and produce it to meet $C D$ produced at G, also draw $B D$ which intersects $E F$ at O.

To prove $E F \| A B$ and $E F=\frac{1}{2}(A B+C D)$.
Proof in $\triangle G C B, E$ and F are respectively the mid-points of $B G$ and $B C$, then by mid-point theorem,

$$
E F \| G C
$$

But
$G C \| A B$ or $C D \| A B$
[given]
\therefore
$E F \| A B$
In $\triangle A D B, A B \| E O$ and E is the mid-point of $A D$.
Therefore by converse of mid-point theorem, O is mid-point of $B D$.
Also,

$$
\begin{equation*}
E O=\frac{1}{2} A B \tag{i}
\end{equation*}
$$

In $\triangle B D C, O F \| C D$ and O is the mid-point of $B D$.

$$
\begin{equation*}
\therefore \quad O F=\frac{1}{2} C D \quad \text { [by converse of mid-point theorem]. } \tag{ii}
\end{equation*}
$$

On adding Eqs. (i) and (ii), we get

$$
\begin{aligned}
& E O+O F & =\frac{1}{2} A B+\frac{1}{2} C D \\
\Rightarrow & E F & =\frac{1}{2}(A B+C D)
\end{aligned}
$$

Hence proved.

Question 13:

Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle.

Solution:

Given Let $A B C D$ be a parallelogram and $A P, B R, C R$, be are the bisectors of $\angle A$, $\angle B, \angle C$ and $\angle D$, respectively.
To prove Quadrilateral PQRS is a rectangle.
Proof Since, $A B C D$ is a parallelogram, then $D C \| A B$ and $D A$ are transversal.
$\angle A+\angle D=180^{\circ}$
[sum of interior angles of a parallelogram is 180°]
or, $1 / 2 \angle \mathrm{~A}+1 / 2 \angle \mathrm{D}=90^{\circ}$ [dividing both sides by 2]
$\angle P A D+\angle P D A=90^{\circ}$
$\angle A P D=90^{\circ} \quad$ [since the sum of all angles of a triangle is 180°]
$\therefore \angle \mathrm{SPQ}=90^{\circ} \quad$ [vertically opposite angles]
$\angle \mathrm{PQR}=90^{\circ}$
$\angle Q R S=90^{\circ}$
and $\angle \mathrm{PSR}=90^{\circ}$
Thus, PQRS is a quadrilateral whose each angle is 90°.
Hence, PQRS is a rectangle.

Question 14:
P and O are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals $A C$ and $B D$. Show that $P Q$ is bisected at O.

Answer:
Given $A B C D$ is a parallelogram whose diagonals bisect each other at O.
To show $P Q$ is bisected at O.

In $\triangle O D P$ and $\triangle O B Q$,
and

$$
\begin{aligned}
\angle B O Q & =\angle P O D \\
\angle O B Q & =\angle O D P \\
O B & =O D \\
\triangle O D P & \cong \triangle O B Q \\
O P & =O Q
\end{aligned}
$$

[since, vertically opposite angles] $\angle O B Q=\angle O D P \quad$ [alternate interior angles]

So, $P Q$ is bisected at O.

Question 15:
$A B C D$ is a rectangle in which diagonal $B D$ bisects $\angle B$. Show that $A B C D$ is a square.

Solution:

Given In a rectangle $A B C D$, diagonal $B D$ bisects $\angle B$.
Construct Join AC.
To show $A B C D$ is a square.

Proof

In $\triangle B A D$ and $\triangle B C D$,

$$
\begin{aligned}
\angle A B D & =\angle C B D \\
\angle A & =\angle C \\
B D & =B D \\
\triangle B A D & \cong \triangle B C D \\
A B & =B C \\
A D & =C D
\end{aligned}
$$

\therefore
\therefore
[given]
[each 90°]
[common side]
[by AAS congruence rule]
[by CPCT rule] ...(i)

But in rectangle $A B C D$, opposite sides are equal.

\therefore	$A B=C D$
and	$B C=A D$

From Eqs. (i) and (ii),

$$
\begin{equation*}
A B=B C=C D=D A . \tag{ii}
\end{equation*}
$$

So, $A B C D$ is a square.
Hence proved.

Question 16:

D, E and F are respectively the mid-points of the sides $A B, B C$ and $C A$ of a $\triangle A B C$. Prove that by joining these mid-points D, E and F, the $\triangle A B C$ is divided into four congruent triangles.

Solution:

Given In a $\triangle A B C, D, E$ and F are respectively the mid-points of the sides $A B, B C$ and $C A$. To prove $\triangle A B C$ is divided into four congruent triangles.
Proof Since, $A B C$ is a triangle and D, E and F are the mid-points of sides $A B, B C$ and CA, respectively.

Then, $\mathrm{AD}=\mathrm{BD}=\frac{1}{2} A B, \mathrm{BE}=\mathrm{EC}=\frac{1}{2} B C, \mathrm{AF}=\mathrm{CF}=\frac{1}{2} A C$.

Now using the mid-point theorem,
$\mathrm{EF} \| \mathrm{AB}$, and $\mathrm{EF}=\frac{1}{2} A B=\mathrm{AD}=\mathrm{BD}$
$\mathrm{ED} \| \mathrm{AC}$, and $\mathrm{ED}=\frac{1}{2} A C=\mathrm{AF}=\mathrm{CF}$
$\mathrm{DF} \| \mathrm{BC}$, and $\mathrm{DF}=\frac{1}{2} B C=\mathrm{BE}=\mathrm{CE}$

In $\triangle \mathrm{ADF}$ and $\triangle E F D, A D=E F$

$$
\mathrm{AF}=\mathrm{DE}
$$

$$
D F=F D
$$

[common]
Therefore,

So, $\triangle \mathrm{ABC}$ is divided into 4 congruent triangles. (hence proved)

Question 17:

Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.

Solution:

Given Let $A B C D$ be a trapezium in which $A B \| D C$ and let M and N be the mid-points of the diagonals $A C$ and $B D$, respectively.
To prove: MN || AB ||CD
We join $C N$ and produce it to meet $A B$ at E.
In $\triangle \mathrm{CDN}$ and $\triangle \mathrm{EBN}$, we have

$$
\begin{array}{ll}
\mathrm{DN}=\mathrm{BN} & {[\mathrm{~N} \text { is mid-point of } \mathrm{BD}]} \\
\angle \mathrm{DCN}=\angle \mathrm{BEN} & \text { [alternate interior angles] } \\
\angle \mathrm{CDN}=\angle \mathrm{EBN} & \text { [alternate interior angles] } \\
\triangle \mathrm{CDN} \cong \triangle \mathrm{EBN} & \text { [by AAS congruence rule] }
\end{array}
$$

Therefore, $\mathrm{DC}=\mathrm{EB}$ and $\mathrm{CN}=\mathrm{NE}$
[CPCT]
Thus, in $\triangle C A E$, the points M and N are mid-points of $A C$ and CE, respectively.

Therefore, MN || AE
MN || $A B \| C D$.
[mid-point theorem]
[Hence proved]

Question 18:

P is the mid-point of the side CD of a parallelogram ABCD. A line through C parallel to PA intersects $A B$ at Q and $D A$ produced at R. Prove that $D A=A R$ and $C Q=Q R$.

Solution:

Given In a parallelogram $A B C D, P$ is the mid-point of $D C$.
To prove $D A=A R$ and $C Q=Q R$
Proof $A B C D$ is a parallelogram.

$\therefore \quad B C=A D$ and $B C \| A D$
Also,

$$
D C=A B \text { and } D C \| A B
$$

Since, P is the mid-point of $D C$.

$$
\therefore \quad D P=P C=\frac{1}{2} D C
$$

Now,

$$
Q C \| A P \text { and } P C \| A Q
$$

So, $A P C Q$ is a parallelogram.

		$A Q$	$=P C=\frac{1}{2} D C$
		$=\frac{1}{2} A B=B Q$	
Now, in $\triangle A Q R$	and $\triangle B Q C$,	$A Q$	$=B Q$
	and	$\angle A Q R$	$=\angle B Q C$
	\therefore	$\angle A R Q$	$=\angle B C Q$
\therefore	$\triangle A Q R$	$\cong \triangle B Q C$	
	But	$A R$	$=B C$
	\therefore	$B C$	$=D A$
Also,	$A R$	$=D A$	
	$C Q$	$=Q R$	

$$
[\because D C=A B] \ldots(i)
$$

[from Eq. (i)] [vertically opposite angles] [Alternate interior angles] [by AAS congruence rule] [by CPCT rule]
[by CPCT rule] Hence proved.

