Chapter 12: Heron's Formula

Q.1: Find the area of a triangle whose two sides are 18 cm and 10 cm and the perimeter is 42cm.

Solution:
Assume that the third side of the triangle to be " x ".
Now, the three sides of the triangle are $18 \mathrm{~cm}, 10 \mathrm{~cm}$, and " x " cm
It is given that the perimeter of the triangle $=42 \mathrm{~cm}$
So, $x=42-(18+10) c m=14 \mathrm{~cm}$
\therefore The semi perimeter of triangle $=42 / 2=21 \mathrm{~cm}$
Using Heron's formula,
Area of the triangle,
$=\sqrt{ }[s(s-a)(s-b)(s-c)]$
$=\sqrt{ }[21(21-18)(21-10)(21-14)] \mathrm{cm}^{2}$
$=\sqrt{ }[21 \times 3 \times 11 \times 7] \mathrm{m}^{2}$
$=21 \sqrt{ } 11 \mathrm{~cm}^{2}$
Q.2: The sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.
Solution:
The ratio of the sides of the triangle is given as 12: 17: 25
Now, let the common ratio between the sides of the triangle be " x "
\therefore The sides are $12 x, 17 x$ and $25 x$
It is also given that the perimeter of the triangle $=540 \mathrm{~cm}$
$12 x+17 x+25 x=540 \mathrm{~cm}$
$\Rightarrow 54 x=540 \mathrm{~cm}$
So, $x=10$
Now, the sides of the triangle are $120 \mathrm{~cm}, 170 \mathrm{~cm}, 250 \mathrm{~cm}$.
So, the semi perimeter of the triangle $(\mathrm{s})=540 / 2=270 \mathrm{~cm}$
Using Heron's formula,
Area of the triangle

$$
\begin{aligned}
& =\sqrt{s(s-a)(s-b)(s-c)} \\
& =[\sqrt{270(270-120)(270-170)(270-250)}] \mathrm{cm}^{2} \\
& =[\sqrt{270 \times 150 \times 100 \times 20}] \mathrm{cm}^{2} \\
& =9000 \mathrm{~cm}^{2}
\end{aligned}
$$

Q.3: A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m . The non-parallel sides are 14 m and 13 m . Find the area of the field.

Solution:

First, draw a line segment BE parallel to the line AD. Then, from B, draw a perpendicular on line segment CD.

Now, it can be seen that the quadrilateral ABED is a parallelogram. So,
$A B=E D=10 \mathrm{~m}$
$A D=B E=13 \mathrm{~m}$
$E C=25-E D=25-10=15 \mathrm{~m}$
Now, consider the triangle BEC,
Its semi perimeter $(\mathrm{s})=(13+14+15) / 2=21 \mathrm{~m}$
By using Heron's formula,
Area of $\triangle B E C=$

$$
\sqrt{s(s-a)(s-b)(s-c)}
$$

$(\sqrt{21 \times(21-13) \times(21-14) \times(21-15)}) m^{2}$
$(\sqrt{21} \times 8 \times 7 \times 6) m^{2}$
$=84 \mathrm{~m}^{2}$
We also know that the area of $\triangle \mathrm{BEC}=(1 / 2) \times \mathrm{CE} \times \mathrm{BF}$
$84 \mathrm{~cm}^{2}=(1 / 2) \times 15 \times \mathrm{BF}$
$\Rightarrow B F=(168 / 15) \mathrm{cm}=11.2 \mathrm{~cm}$
So, the total area of ABED will be $B F \times D E$, i.e. $11.2 \times 10=112 \mathrm{~m}^{2}$
\therefore Area of the field $=84+112=196 \mathrm{~m}^{2}$
Q.4: A rhombus-shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting?
Solution:
Draw a rhombus-shaped field first with the vertices as ABCD. The diagonal AC divides the rhombus into two congruent triangles which are having equal areas. The diagram is as follows.

Consider the triangle BCD,
Its semi-perimeter $=(48+30+30) / 2 \mathrm{~m}=54 \mathrm{~m}$
Using Heron's formula,
Area of the $\triangle \mathrm{BCD}=$

$$
\begin{aligned}
& \sqrt{s(s-a)(s-b)(s-c)} \\
& (\sqrt{54(54-48)(54-30)(54-30)}) \mathrm{m}^{2} \\
& (\sqrt{54 \times 6 \times 24 \times 24}) \mathrm{m}^{2}
\end{aligned}
$$

$=432 \mathrm{~m}^{2}$
\therefore Area of field $=2 \times$ area of the $\triangle B C D=(2 \times 432) \mathrm{m}^{2}=864 \mathrm{~m}^{2}$
Thus, the area of the grass field that each cow will be getting $=(864 / 18) \mathrm{m}^{2}=48 \mathrm{~m}^{2}$
Q.5: Find the cost of laying grass in a triangular field of sides $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m at the rate of Rs 7 per \mathbf{m}^{2}.

Solution:
According to the question,
Sides of the triangular field are $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m .
Cost of laying grass in a triangular field $=$ Rs 7 per m2
Let $a=50, b=65, c=65$
$s=(a+b+c) / 2$
$\Rightarrow s=(50+65+65) / 2$
= 180/2
$=90$.
Area of triangle $=\sqrt{ }(s(s-a)(s-b)(s-c))$
$=\sqrt{ }(90(90-50)(90-65)(90-65))$
$=\sqrt{ }(90 \times 40 \times 25 \times 25)$
$=1500 \mathrm{~m}^{2}$
Cost of laying grass $=$ Area of triangle \times Cost per m²
$=1500 \times 7$
= Rs. 10500
Q.6: The perimeter of an isosceles triangle is 32 cm . The ratio of the equal side to its base is 3: 2. Find the area of the triangle.
Solution:
According to the question,
The perimeter of the isosceles triangle $=32 \mathrm{~cm}$
It is also given that,
Ratio of equal side to base $=3: 2$
Let the equal side $=3 x$
So, base $=2 x$
Perimeter of the triangle $=32$
$\Rightarrow 3 x+3 x+2 x=32$
$\Rightarrow 8 \mathrm{x}=32$
$\Rightarrow x=4$.
Equal side $=3 x=3 \times 4=12$
Base $=2 x=2 \times 4=8$
The sides of the triangle $=12 \mathrm{~cm}, 12 \mathrm{~cm}$ and 8 cm .
Let $a=12, b=12, c=8$
$s=(a+b+c) / 2$
$\Rightarrow s=(12+12+8) / 2$
$=32 / 2$
$=16$.
Area of the triangle $=\sqrt{ }(s(s-a)(s-b)(s-c))$
$=\sqrt{ }(16(16-12)(16-12)(16-8))$
$=\sqrt{ }(16 \times 4 \times 4 \times 8)$
$=32 \sqrt{ } 2 \mathrm{~cm}^{2}$
Q.7: How much paper of each shade is needed to make a kite given in the figure, in which $A B C D$ is a square with a diagonal of 44 cm .

Solution:
According to the figure,
$A C=B D=44 \mathrm{~cm}$
$A O=44 / 2=22 \mathrm{~cm}$
$B O=44 / 2=22 \mathrm{~cm}$
From $\triangle A O B$,
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{BO}^{2}$
$\Rightarrow A B^{2}=22^{2}+22^{2}$
$\Rightarrow A B^{2}=2 \times 22^{2}$
$\Rightarrow A B=22 \sqrt{ } 2 \mathrm{~cm}$
Area of square $=(\text { Side })^{2}$
$=(22 \sqrt{ } 2)^{2}$
$=968 \mathrm{~cm}^{2}$
Area of each triangle (I, II, III, IV) = Area of square /4
= $968 / 4$
$=242 \mathrm{~cm}^{2}$
To find area of lower triangle,
Let $a=20, b=20, c=14$
$s=(a+b+c) / 2$
$\Rightarrow s=(20+20+14) / 2=54 / 2=27$.
Area of the triangle $=\sqrt{ }[\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})]$
$=\downarrow[27(27-20)(27-20)(27-14)]$
$=\sqrt{ }[27 \times 7 \times 7 \times 13]$
$=131.14 \mathrm{~cm}^{2}$
Therefore,
We get,
Area of Red = Area of IV
$=242 \mathrm{~cm}^{2}$
Area of Yellow $=$ Area of $\mathrm{I}+$ Area of II
$=242+242$
$=484 \mathrm{~cm}^{2}$
Area of Green $=$ Area of III + Area of the lower triangle
$=242+131.14$
$=373.14 \mathrm{~cm}^{2}$
Q.8: A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m , wide space should be left in the front and back each and 2 m wide space on each of the other sides. Find the largest area where a house can be constructed.

Solution:

Let the given rectangle be rectangle PQRS,
According to the question,
$\mathrm{PQ}=40 \mathrm{~m}$ and $\mathrm{QR}=15 \mathrm{~m}$
As 3 m is left in both front and back,
$A B=P Q-3-3$
$\Rightarrow A B=40-6$
$\Rightarrow A B=34 m$
Also,
Given that 2 m has to be left at both the sides,
$B C=Q R-2-2$
$\Rightarrow B C=15-4$
$\Rightarrow B C=11 \mathrm{~m}$
Now, Area left for house construction is the area of ABCD.
Hence,
Area $(A B C D)=A B \times C D$
$=34 \times 11$

$$
=374 \mathrm{~m}^{2}
$$

