Chapter 2 - POLYNOMIALS

 Exercise-2.1Question 1: The graphs of $y=p(x)$ are given in Fig. 2.10 below, for some polynomials $p(x)$. Find the number of zeroes of $p(x)$, in each case.

Answer:
(i)

This graph shows $p(x)$ has no zero.
(ii)

This graph shows $p(x)$ has one zero.
(iii)

This graph shows $p(x)$ has three zeroes.
(iv)

This graph shows $p(x)$ has two zeroes.
(v)

This graph shows $p(x)$ has four zeroes.
(vi)

This graph shows $p(x)$ has three zeroes.

Exercise 2.2

Question 1: Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) $x^{2}-2 x-8$
(ii) $4 s^{2}-4 s+1$
(iii) $6 x^{2}-3-7 x$
(iv) $4 u^{2}+8 u$
(v) $\mathrm{t}^{2}-15$
(vi) $3 x^{2}-x-4$

Answer: (i) $x^{2}-2 x-8$

$$
\begin{aligned}
& =x^{2}-4 x+2 x-8 \\
& =x(x-4)+2(x-4) \\
& =(x-4)(x+2)
\end{aligned}
$$

Zeroes of polynomial equation $=(4,-2)$
Hence, sum of the zeroes $=(4-2)=2=\frac{-(-2)}{1}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
And, product of the zeroes $=4 \times(-2)=-8=-\left(\frac{8}{1}\right)=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
(ii) $4 \mathrm{~s}^{2}-4 \mathrm{~s}+1$
$=4 s^{2}-2 s-2 s+1$
$=2 s(2 s-1)-1(2 s-1)$
$=(2 s-1)(2 s-1)$
Zeroes of polynomial equation $=\left(\frac{1}{2}, \frac{1}{2}\right)$
Hence, sum of the zeroes $=\frac{1}{2}+\frac{1}{2}=1=-\frac{4}{4}=\frac{-(\text { coefficient of } s)}{\left(\text { coefficient of } s^{2}\right)}$
And, product of the zeroes $=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}=\frac{\text { constant term }}{\left(\text { coefficient of s }{ }^{2}\right)}$
(iii) $6 x^{2}-3-7 x$
$=6 x^{2}-7 x-3$
$=6 x^{2}-9 x+2 x-3$
$=3 x(2 x-3)+1(2 x-3)$
$=(3 x+1)(2 x-3)$
Zeroes of polynomial equation $=\left(-\frac{1}{3}, \frac{3}{2}\right)$
Hence, sum of the zeroes $=-\frac{1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
And, product of the zeroes $=-\frac{1}{3} \times \frac{3}{2}=-\left(\frac{1}{2}\right)=-\left(\frac{3}{6}\right)=\frac{\text { constant term }}{\text { coefficient of } x^{2}}$
(iv) $4 u^{2}+8 u=4 u(u+2)$

Zeroes of polynomial equation $=(0,-2)$
Hence, sum of the zeroes $=0+(-2)=-2=-\left(\frac{8}{4}\right)=\frac{-(\text { coefficient of } u)}{\left(\text { coefficient of } u^{2}\right)}$
And, product of the zeroes $=0 \times(-2)=0=\frac{0}{4}=\frac{\text { constant term }}{\text { coefficient of } u^{2}}$
(v) $\mathrm{t}^{2}-15$
or, $t= \pm \sqrt{15}$
Zeroes of polynomial equation $=(\sqrt{15},-\sqrt{15})$
Hence, sum of the zeroes $=\sqrt{15}+(-\sqrt{15})=0=-\left(\frac{0}{1}\right)=\frac{-(\text { coefficient of } t)}{\left(\text { (coefficient of } t^{2}\right)}$
And, product of the zeroes $=\sqrt{15} \times(-\sqrt{15})=(-15)=-\left(\frac{15}{1}\right)=\frac{\text { constant term }}{\text { coefficient of } t^{2}}$
(vi) $3 x^{2}-x-4$
$=3 x^{2}-4 x+3 x-4$
$=x(3 x-4)+1(3 x-4)$
$=(3 x-4)(x+1)$
Zeroes of polynomial equation $=\left(\frac{4}{3},-1\right)$
Hence, sum of the zeroes $=\frac{4}{3}+(-1)=\frac{1}{3}=-\left(-\frac{1}{3}\right) \frac{-(\text { coefficient of } x)}{\left(\text { coefficient of } x^{2}\right)}$
And, product of the zeroes $=\frac{4}{3} \times(-1)=-\left(\frac{4}{3}\right)==\frac{\text { constant term }}{\text { coefficient of } x^{2}}$

Question 2: Find a quadratic polynomial each with the given numbers as the sum and product of zeroes respectively:
(i) $\frac{1}{4},-1$
(ii) $\sqrt{2}, \frac{1}{3}$
(iii) $0, \sqrt{5}$
(iv) 1,1
(v) $-\frac{1}{4}, \frac{1}{4}$
(vi) 4,1

Answer:
(i) Let the zeroes of the polynomial be α and β, then, $\alpha+\beta=\frac{1}{4}$ and $\alpha \beta=-1$

Therefore, the required polynomial will be,

$$
\begin{aligned}
& x^{2}-(\alpha+\beta) x+\alpha \beta \\
= & x^{2}-\frac{1}{4} x+(-1) \\
= & x^{2}-\frac{1}{4} x-1 \\
= & 4 x^{2}-x-4
\end{aligned}
$$

(ii) Let the zeroes of the polynomial be α and β, then, $\alpha+\beta=\sqrt{2}$ and $\alpha \beta=\frac{1}{3}$

Therefore, the required polynomial will be,
$x^{2}-(\alpha+\beta) x+\alpha \beta$
$=x^{2}-\sqrt{2} x+\frac{1}{3}$
$=3 x^{2}-3 \sqrt{2} x+1$
(iii) Let the zeroes of the polynomial be α and β, then, $\alpha+\beta=0$ and $\alpha \beta=\sqrt{5}$

Therefore, the required polynomial will be,
$\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
$=x^{2}-0 x+\sqrt{5}$
$=x^{2}+\sqrt{5}$
(iv) Let the zeroes of the polynomial be α and β, then, $\alpha+\beta=1$ and $\alpha \beta=1$

Therefore, the required polynomial will be,

$$
\begin{aligned}
& \mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta \\
= & \mathrm{x}^{2}-1 \mathrm{x}+1 \\
= & \mathrm{x}^{2}-\mathrm{x}+1
\end{aligned}
$$

(v) Let the zeroes of the polynomial be α and β, then, $\alpha+\beta=-\left(\frac{1}{4}\right)$ and $\alpha \beta=\frac{1}{4}$

Therefore, the required polynomial will be,
$x^{2}-(\alpha+\beta) x+\alpha \beta$
$=x^{2}-\left(-\frac{1}{4}\right) x+\frac{1}{4}$
or, $4 x^{2}+x+1=0$
(vi) Let the zeroes of the polynomial be α and β, then, $\alpha+\beta=4$ and $\alpha \beta=1$

Therefore, the required polynomial will be,
$\begin{aligned} & x^{2}-(\alpha+\beta) x+\alpha \beta \\ = & x^{2}-4 \mathrm{x}+1\end{aligned}$

Exercise 2.3

Question 1: Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder in each of the following:
(i) $p(x)=x^{3}-3 x^{2}+5 x-3, g(x)=x^{2}-2$
(ii) $p(x)=x^{4}-3 x^{2}+4 x+5, g(x)=x^{2}+1-x$
(iii) $p(x)=x^{4}-5 x+6, g(x)=2-x^{2}$

Answer: (i)Given, dividend $=p(x)=x^{3}-3 x^{2}+5 x-3$
Divisor $=x^{2}-2$

$$
\begin{array}{r}
x^{2}-2 \begin{array}{l}
x-3 \\
\frac{x^{3}-3 x^{2}+5 x-3}{-3 x^{2}+7 x-3} \\
\frac{-3 x^{2}+0 x+6}{7 x-9}
\end{array}
\end{array}
$$

Therefore, on division we get:
Quotient $=x-3$
Remainder $=7 x-9$
(ii) Given, Dividend $=x^{4}-3 x^{2}+4 x+5$

Divisor $=x^{2}+1-x$

$$
\begin{array}{r}
x^{2}+1-x \sum^{\frac{x^{2}+x-3}{x^{4}+0 x^{3}-3 x^{2}+4 x+5}} \\
\frac{x^{4}-x^{3}+x^{2}}{x^{3}-4 x^{2}+4 x+5} \\
-x^{3}-x^{2}+x
\end{array} \quad \begin{array}{r}
-3 x^{2}+3 x+5 \\
-3 x^{2}+3 x-3
\end{array}
$$

Therefore, on division, we get :
Quotient: $x^{2}+x-3$
Remainder: 8
(iii) Given, Dividend $=p(x)=x^{4}-5 x+6=x^{4}+0 x^{3}+0 x^{2}-5 x+6$

Divisor $=2-x^{2}=-x^{2}-2 \quad x^{4}+0 x^{3}$

$$
\begin{array}{r}
-x^{2}+2 \begin{array}{l}
-x^{2}-2 \\
\frac{x^{4}+0 x^{3}+0 x^{2}-5 x+6}{} \\
\frac{x^{4}+0 x^{3}-2 x^{2}}{2 x^{2}-5 x+6} \\
-2 x^{2}+0 x-4 \\
-5 x+10
\end{array}
\end{array}
$$

Question 2: Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
(i) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$
(ii) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) $x^{2}+3 x+1, x^{5}-4 x^{3}+x^{2}+3 x+1$

Answer:
(i) Given , first polynomial $=t^{2}-3$

Second polynomial $=2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

We see, the remainder is 0 . Therefore, $t^{2}-3$ is a factor of $2 t^{2}+3 t+4$.
(ii) Given, first polynomial $=x^{2}+3 x+1$

Second polynomial $=3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$

$$
\begin{array}{r}
x^{2}+3 x+1 \begin{array}{l}
3 x^{2}-4 x+2 \\
\begin{array}{l}
3 x^{4}+5 x^{3}-7 x^{2}+2 x+2 \\
3 x^{4}+9 x^{3}+3 x^{2}
\end{array} \\
\begin{array}{r}
-4 x^{3}-10 x^{2}+2 x+2 \\
-4 x^{3}-12 x^{2}-4 x
\end{array} \\
\hline \quad 2 x^{2}+6 x+2 \\
2 x^{2}+6 x+2 \\
\hline
\end{array} \\
\hline
\end{array}
$$

We see, the remainder is 0 . Therefore, $x^{2}+3 x+1$ is a factor of $3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(iii) Given, first polynomial $=x^{3}-3 x+1$

Second Polynomial $=x^{5}-4 x^{3}+x^{2}+3 x+1$

$$
\begin{array}{r}
x^{3}-3 x+1 \begin{array}{c}
x^{2}-1 \\
x^{5}+0 x^{4}-4 x^{3}+x^{2}+3 x+1 \\
\frac{x^{5}+0 x^{4}-3 x^{3}+x^{2}}{-x^{3}+0 x^{2}+3 x+1} \\
\frac{-x^{3}+0 x^{2}+3 x-1}{2}
\end{array}
\end{array}
$$

We see, the remainder is $2(\neq 0)$. Therefore $x^{3}-3 x+1$ is not a factor of $x^{5}-4 x^{3}+x^{2}+3 x+1$

Question 3: Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its

 zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$Answer: As the given polynomial equation has degree 4, hence there will be total 4 roots.
Given, $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$ are zeroes of polynomial $f(x)$.
Hence, $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)=x^{2}-\frac{5}{3}=0$
$\left(3 x^{2}-5\right)=0$, is a factor of given polynomial $f(x) . \quad-6 x^{3}+3 x^{2}-510 x-52 x+1$

	$x^{2}+2 x+1$
$3 x^{2}-5$	$\begin{aligned} & 3 x^{4}+6 x^{3}-2 x^{2}-10 x-5 \\ & 3 x^{4} \quad-5 x^{2} \\ & (-) \quad(+) \end{aligned}$
	$\begin{aligned} & +6 x^{3}+3 x^{2}-10 x-5 \\ & -6 x^{3} \quad-10 x \\ & (+) \quad(+) \end{aligned}$
	$3 x^{2}$ -5 $3 x^{2}$ -5 $(-)$ $(+)$
	0

Therefore, $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5=\left(3 x^{2}-5\right)\left(x^{2}+2 x+1\right)$
And on further factorizing $\left(x^{2}+2 x+1\right)$ we get,
$x^{2}+2 x+1=x^{2}+x+x+1=0$
Or, $x(x+1)+1(x+1)=0$
or, $(x+1)(x+1)=0$

So, its zeroes are: $x=(-1)$ and $x=(-1)$.
Hence, all the four zeroes are $(-1),(-1), \sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

Question 4: On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $g(x)$, the quotient and remainder were $x-2$ and $-2 x+4$, respectively. Find $g(x)$.
Answer: Given that, dividend, $p(x)=x^{3}-3 x^{2}+x+2$
Quotient $=(x-2)$ and Remainder is $-2 x+4$
So, as we know that,
Dividend $=$ Divisor \times Quotient + Remainder
or, $x^{3}-3 x^{2}+x+2=g(x) \times(x-2)+(-2 x+4)$
or, $x^{3}-3 x^{2}+x+2-(-2 x+4)=g(x) \times(x-2)$
or, $x^{3}-3 x^{2}+x+2+2 x-4=g(x) \times(x-2)$
or, $\frac{x^{3}-3 x^{2}+3 x-2}{x-2}=g(x)$

Question 5: Give examples of polynomials $p(x), g(x), q(x)$ and $r(x)$, which satisfy the division algorithm and
(i) $\operatorname{deg} p(x)=\operatorname{deg} q(x)$
(ii) $\operatorname{deg} q(x)=\operatorname{deg} r(x)$
(iii) $\operatorname{deg} r(x)=0$

Answer: According to the division algorithm, dividend $p(x)$ and divisor $g(x)$ are two polynomials, where $\mathrm{g}(\mathrm{x}) \neq 0$.
(i) Let, $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{2}+2 \mathrm{x}+8$
$g(x)=2$
$q(x)=x^{2}+x+4$
$r(x)=0$
clearly, $p(x)$ is divisible by $q(x)$ and remainder $r(x)=0$
And we can see that, the degree of quotient is equal to the degree of dividend.
Hence, division algorithm is satisfied.
(ii) Let, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}$
$g(x)=x+1$
$q(x)=x$
$r(x)=0$
Clearly, $p(x)$ is divisible by $q(x)$ and remainder $r(x)=0$
And we can see that, the degree of quotient is equal to the degree of remainder.
Hence, division algorithm is satisfied.
(iii) Let, $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}+1$
$g(x)=x$
So, Clearly, $q(x)=x$
$r(x)=1$

Hence, we can see that, the degree of remainder here is 0 .
Therefore, division algorithm is satisfied here.

Exercise 2.4

Question 1: Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
(i) $2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$
(ii) $x^{3}-4 x^{2}+5 x-2 ; 2,1,1$

Answer: (i) $p(x)=2 x^{3}+x^{2}-5 x+2$
So, $p\left(\frac{1}{2}\right)=2\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}-5 x+2$

$$
=\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)-\left(\frac{5}{2}\right)+2
$$

$$
=-2+2=0
$$

$p(1)=2(1)^{3}+(1)^{2}-5(1)+2$

$$
=2+1-5+2=0
$$

$\mathrm{p}(-2)=2(-2)^{3}+(-2)^{2}-5(-2)+2$

$$
=-16+4+10+2=0
$$

Hence, it is proved that $\frac{1}{2}, 1,-2$ are the zeroes of the given eq.
Now, comparing with $a x^{3}+b x^{2}+c x+d=0$, we get,
$\mathrm{a}=2$
$b=1$
$c=(-5)$
$\mathrm{d}=2$
As we know, if α, β, γ are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$, then;
$\alpha+\beta+\gamma=-\left(\frac{b}{a}\right)$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
$\alpha \beta \gamma=-\left(\frac{d}{a}\right)$.
Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=\frac{1}{2}+1+(-2)=-\left(\frac{1}{2}\right)=-\left(\frac{b}{a}\right)$
$\alpha \beta+\beta \gamma+\gamma \alpha=\left(\frac{1}{2} \times 1\right)+[1 \times(-2)]+\left(-2 \times \frac{1}{2}\right)=-\left(\frac{5}{2}\right)=\frac{c}{a}$
$\alpha \beta \gamma=\frac{1}{2} \times 1 \times(-2)=-\left(\frac{2}{2}\right)=-\left(\frac{d}{a}\right)$
Hence, the relationship between the zeroes and the coefficients are satisfied.
(ii) $p(x)=x^{3}-4 x^{2}+5 x-2$

So, $p(2)=(2)^{3}-4(2)^{2}+5(2)-2=8-16+10-2=0$

$$
p(1)=(1)^{3}-4(1)^{2}+5(1)-2=1-4+5-2=0
$$

Hence, 2, 1, 1 are the zeroes of the eq.
Now, comparing with $a x^{3}+b x^{2}+c x+d=0$, we get,
$\mathrm{a}=1$
$b=(-4)$
$\mathrm{c}=5$
$\mathrm{d}=(-2)$
Therefore, putting the values of zeroes of the polynomial,
$\alpha+\beta+\gamma=2+1+1=4=-\left(\frac{-4}{1}\right)=-\left(\frac{b}{a}\right)$
$\alpha \beta+\beta \gamma+\gamma \alpha=(2 \times 1)+(1 \times 1)+(2 \times 1)=2+1+2=5=\left(\frac{5}{1}\right)=\frac{c}{a}$
$\alpha \beta \gamma=2 \times 1 \times 1=2=-\left(\frac{-2}{1}\right)=-\left(\frac{d}{a}\right)$
Hence, the relationship between the zeroes and the coefficients are satisfied.

Question 2: Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Answer: Let the polynomial be $a x^{3}+b x^{2}+c x+d$ and the zeroes be α, β, γ.
Hence, according to the qs. $\alpha+\beta+\gamma=-\left(\frac{b}{a}\right)=\frac{2}{1}$

$$
\begin{aligned}
& \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=-\left(\frac{7}{1}\right) \\
& \alpha \beta \gamma=-\left(\frac{d}{a}\right)=-\left(\frac{14}{1}\right)
\end{aligned}
$$

Therefore, $a=1, b=(-2), c=(-7), d=14$
Hence, the required cubic polynomial is $x^{3}-2 x^{2}-7 x+14$

Question 3: If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a-b, a, a+b$, find \mathbf{a} and \mathbf{b}.

Answer: Let α, β, and y be the zeroes of polynomial $x^{3}-3 x^{2}+x+1$.
Then, $\alpha=a-b$
$\beta=a$
$y=a+b$
Hence, sum of the zeroes $=\alpha+\beta+\gamma$
or, $3=(a-b)+a+(a+b)$
or, $3=3 a$
or, $a=1$
product of the zeroes $=\alpha \beta \gamma$

$$
\begin{align*}
& \text { or, }-1=(a-b) a(a+b) \\
& \text { or, }-1=a\left(a^{2}-b^{2}\right) \\
& \text { or, }-1=a^{3}-a b^{2} \ldots \ldots \ldots \ldots \tag{2}
\end{align*}
$$

Putting the value of a form eq.(1) and eq.(2) we get,
$1^{3}-1 b^{2}=-1$
or, $1-b^{2}=-1$
or, $b^{2}=2$
or, $b= \pm \sqrt{ } 2$
Hence, $a=1$ and $b= \pm \sqrt{ } 2$

Question 4: If two zeroes of the polynomial $x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are 2 $\pm \sqrt{ } 3$, find other zeroes.

Answer: The degree is 4 , so there will be 4 roots. Two roots are given that, $2+\sqrt{3}$ and $2-\sqrt{3}$.

Therefore, $[x-(2+\sqrt{ } 3)][x-(2-\sqrt{ } 3)]=0$
or, $(x-2-\sqrt{ } 3)(x-2+\sqrt{3})=0$
or, $x^{2}-4 x+1=0$
Hence,

So, $x^{4}-6 x^{3}-26 x^{2}+138 x-35=\left(x^{2}-4 x+1\right)\left(x^{2}-2 x-35\right)$
On further factorizing $\left(x^{2}-2 x-35\right)$ we get,
$x^{2}-(7-5) x-35=x^{2}-7 x+5 x+35=0$
or, $x(x-7)+5(x-7)=0$
or, $(x+5)(x-7)=0$
So, its zeroes are (-5) and 7 .
Therefore, all four zeroes of the given polynomial equation are: $2+\sqrt{ } 3,2-\sqrt{3},-5$ and 7.

