Chapter 7: Triangles

Exercise:7.1(Multiple Choice questions)

Question 1: Which of the following is not a criterion for congruence of triangles?
(a) SAS
(b) ASA
(c) SSA
(d) SSS

Thinking Process
For a triangle to be congruent the equal angles must be included between the pairs of equal sides. So, the SAS congruence rule holds but not ASS or SSA rule.

Answer: (c) We know that two triangles are congruent if the sides and angles of one triangle are equal to the corresponding sides and angles of the other triangle.
Also, the criterion for congruence of triangles is SAS (Side-Angle-Side), ASA (Angle-SideAngle), SSS (Side-Side-Side) and RHS (right angle-hypotenuse-side).
So, SSA is not a criterion for the congruence of triangles.

Question 2:

If $A B=Q R, B C=P R$ and $C A=P Q$, then
(a) $\triangle A B C \cong \triangle Q R P$
(b) $\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$
(c) $\triangle B A C \cong \triangle R Q P$
(d) $\triangle \mathrm{PQR} \cong \triangle \mathrm{BCA}$

Answer: (b) We know that, if $\Delta R S T$ is congruent to $\Delta U V W$ i.e., $\Delta R S T=\Delta U V W$, then sides of Δ RST fall on corresponding equal sides of $\triangle U V W$ and angles of \triangle RST fall on corresponding equal angles of $\triangle U V W$.
Here, given $A B=Q R, B C=P R$ and $C A=P Q$, which shows that $A B$ covers $Q R, B C$ covers $P R$ and CA covers PQ i.e., A corresponds to Q, B corresponds to R and C correspond to P. or $A \leftrightarrow Q, B \leftrightarrow R, C \leftrightarrow P$
Under this correspondence,
$\triangle A B C \cong \triangle Q R P$, so option (a) is incorrect, or $\triangle B A C \cong \triangle R Q P$, so option (c) is incorrect, or $\triangle C B A \cong \triangle P R Q$, so option (b) is correct, or $\triangle B C A \cong \triangle R P Q$, so option (d) is incorrect.

Question 3: In $\triangle A B C$, if $A B=A C$ and $\angle B=50^{\circ}$, then $\angle C$ is equal to
(a) 40°
(b) 50°
(c) 80°
(d) 130°

Answer: (b)
Given, triangle $A B C$, such that, $A B=A C$ and $\angle B=50^{\circ}$ In triangle $A B C, A B=A C$

$\angle \mathrm{C}=\angle \mathrm{D}$ [angles opposite to equal sides are equal]
or, $\angle C=50^{\circ}$ [as, $\angle B=50^{\circ}$, given]
Question 4: In $\triangle A B C$, if $B C=A B$ and $\angle B=80^{\circ}$, then $\angle A$ is equal to
(a) 80°
(b) 40°
(c) 50°
(d) 100°

Answer: (c) is the correct option.
Given, triangle $A B C$ such that $B C=A B$ and $\angle 80^{\circ}$
In triangle $A B C A B=B C$ and $\angle C=\angle D$
(1)[angles opposite to
equal sides are equal]
We know that the sum of all angles of a triangle is 180°
Thus, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
or, $\angle A+80^{\circ}+\angle A=180^{\circ}$
or, $2 \angle A=180^{\circ}-80^{\circ}=100^{\circ}$
or, $\angle A=50^{\circ}$

Question 5: In $\triangle P Q R$, if $\angle R=\angle P$ and $Q R=4 \mathrm{~cm}$ and $P R=5 \mathrm{~cm}$. Then, the length of $P Q$ is
(a) 4 cm
(b) 5 cm
(c) 2 cm
(d) 2.5 cm

Answer: The correct answer is (a)
Given, triangle $P Q R$, such that $\angle R=\angle P$ and $Q R=4 \mathrm{~cm}$ and $P R=5 \mathrm{~cm}$

In a triangle, $P Q R, \angle R=\angle P$
or, $\quad \mathrm{PQ}=\mathrm{QP}$ [sides opposite to equal angles are equal]
or, $\quad P Q=4 \mathrm{~cm}[A s, Q R=4 \mathrm{~cm}]$

Question 6: If D is a point on the side $B C$ of a $\triangle A B C$ such that $A D$ bisects $\angle B A C$.
Then,
(a) $B D=C D$
(b) $B A>B D$
(c) $\mathrm{BD}>\mathrm{BA}$
(d)CD > CA

Thinking Process

(i) Firstly, use the property, exterior angle of a triangle is greater than the interior opposite
angle.
(ii) Secondly, use the property that in a triangle, the side opposite to the greater angle is longer.

Answer: (b) is the correct option.
Given, triangle $A B C$ such that $A B$ bisects $\angle B A C$.

In triangle $\mathrm{ABC}, \angle \mathrm{BDA}=$ is an exterior angle.
Thus, $\angle B D A>\angle C A D$
or, $\angle \mathrm{BDA}>\angle \mathrm{BAD} \quad[\mathrm{eq}(1)]$
or, $\mathrm{BA}>\mathrm{BD}$

Question 7: It is given that $\triangle A B C=\triangle F D E$ and $A B=5 \mathrm{~cm}, \angle B=40^{\circ}$ and $\angle A=80^{\circ}$, then Which of the following is true?
(a) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{~F}=60^{\circ}$
(b) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(c) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(d) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{D}=40^{\circ}$

Answer: (b)

Question 8: If two sides of a triangle are of lengths 5 cm and 1.5 cm , then the length of the third side of the triangle cannot be
(a) 3.6 cm
(b) 4.1 cm
(c) 3.8 cm
(d) 3.4 cm

Thinking Process
Use the condition that, sum of any two sides of a triangle is greater than the third side and the difference of any two sides is less than the third side.

Answer: (d) Given, the length of the two sides of a triangle is 5 cm and 1.5 cm , respectively. Let sides $A B=5 \mathrm{~cm}$ and $\mathrm{CA}=1.5 \mathrm{~cm}$
We know that a closed figure formed by three intersecting lines (or sides) is called a triangle, if the difference of two sides < third side and sum of two sides > third side
$\therefore 5-1.5<B C$ and $5+1.5>B C$
or, $3.5<\mathrm{BC}$ and $6.5>\mathrm{BC}$
Here, we see that options (a), (b) and (c) satisfy the above inequality but option (d) does not satisfy the above inequality.

Question 9: In $\triangle P Q R$, if $\angle R>\angle Q$, then
(a) $\mathrm{QR}>\mathrm{PR}$
(b) $P Q>P R$
(c) $P Q<P R$
(d) $\mathrm{QR}<\mathrm{PR}$

Answer: (b)
Given, $\angle \mathrm{R}>\angle \mathrm{Q}$

Or, PQ > PR [side opposite to greater angle is longer]

Question 10: In $\triangle A B C$ and $\triangle P Q R$, if $A B=A C, \angle C=\angle P$ and $\angle B=\angle Q$, then the two triangles are
(a) isosceles but not congruent
(b) isosceles and congruent
(c) congruent but not isosceles
(d) Neither congruent nor isosceles

Answer: (a)
Question 11: In $\triangle A B C$ and $\triangle D E F, A B=F D$ and $\angle A=\angle D$. The two triangles will be congruent by SAS axiom, if
(a) $B C=E F$
(b) $A C=D E$
(c)AC=EF
(d) $B C=D E$

Answer: (b) Given, in $\triangle A B C$ and $\triangle D E F, A B=D F$ and $\angle A=\angle D$
We know that, two triangles will be congruent by ASA rule if two angles and the included side of one triangle are equal to the two angles and the included side of another triangle.
$\therefore A C=D E$

Exercise 7.2 (Very short Answer type question)

Question 1: In $\triangle A B C$ and $\triangle P Q R, \angle A=\angle Q$ and $\angle B=\angle R$. Which side of $\triangle P Q R$ should be equal to side $A B$ of $\triangle A B C$ so that the two triangles are congruent? Give a reason for your answer.

Answer:

Since $A B$ and $Q R$ are included between equal angles. Hence, the side of $\triangle P Q R$ is $Q R$ which should be equal to side $A B$ of $\triangle A B C$, so that the triangles are congruent by the rule ASA.

Question 2:

In $\triangle A B C$ and $\triangle P Q R, \angle A=\angle Q$ and $\angle B=\angle R$. Which side of $\triangle P Q R$ should be equal to side $B C$ of $\triangle A B C$ so that the two triangles are congruent? Give a reason for your answer.

Answer: We have given, in $\triangle A B C$ and $\triangle P Q R$,
$\angle A=\angle Q$ and $\angle B=\angle R$
Since two pairs of angles are equal in two triangles.
We know that, two triangles will be congruent by the AAS rule if two angles and the side of one triangle are equal to the two angles and the side of another triangle.
$\therefore B C=R P$

Question 3:

'If two sides and an angle of one triangle are equal to two sides and an angle of another triangle, then the two triangles must be. Is the statement true?
Why?
Answer: No, because in the congruent rule, the two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle i.e., SAS rule.

Question 4:

'If two angles and a side of one triangle are equal to two angles and a side of another triangle, then the two triangles must be congruent.' Is the statement true? Why?

Answer: No, because sides must be corresponding sides.

Question 5:

Is it possible to construct a triangle with lengths of its sides as $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm ? Give a reason for your answer.

Answer: No, it is not possible to construct a triangle with lengths of its sides as 4 cm , 3 cm and 7 cm because here we see that some of the lengths of two sides are equal
to the third side i.e., $4+3=7$.
As we know that, the sum of any two sides of a triangle is greater than its third side, so a given statement is not correct.

Question 6:

It is given that $\triangle A B C \cong \triangle R P Q$. Is it true to say that $B C=Q R$? Why?
Answer: No, we know that two triangles are congruent if the sides and angles of one triangle are equal to the corresponding side and angles of another triangle.
Here $\triangle A B C \cong \triangle R P Q$
$A B=R P, B C=P Q$ and $A C=R Q$ Hence, it is not true to say that $B C=Q R$.

Question 7:

If $\triangle P Q R \cong \triangle E O F$, then is it true to say that $P R=E F$? Give a reason for your answer.

Answer: Yes, if $\triangle P Q R \cong \triangle E D F$, then it means that corresponding angles and their sides are equal because we know that, two triangles are congruent, if the sides and angles of one triangle are equal to the corresponding sides and angles of another triangle.
Here, $\triangle P Q R \cong \triangle E D F$
$\therefore \mathrm{PQ}=\mathrm{ED}, \mathrm{QR}=\mathrm{DF}$ and $\mathrm{PR}=\mathrm{EF}$
Hence, it is true to say that $P R=E F$.

Question 8:

In $\triangle P Q R, \angle P=70^{\circ}$ and $\angle R=30^{\circ}$. Which side of this triangle is the longest? Give a reason for your answer.

Answer: Given, in $\triangle P Q R, \angle P=70^{\circ}$ and $\angle \mathrm{R}=30^{\circ}$.
We know that the sum of all the angles of a triangle is 180°.
$\angle P+\angle Q+\angle R=180^{\circ}$

$\angle Q=180^{\circ}-\left(70^{\circ}+30^{\circ}\right)=80^{\circ}$
We know that here $\angle Q$ is the longest, so side $P R$ is the longest.
[\because since in a triangle, the side opposite to the largest angle is the longest]

Question 9:

$A D$ is a median of the $\triangle A B C$. Is it true that $A B+B C+C A>2 A D$? Give a reason for your answer.

Answer: yes,

In the triangle ABD, we have
$A B+B D>A D$
In triangle $A C D$, we have, $A C+C D>A D$
On adding eq(1) and (2), we get,
$(A B+B D+A C+C D)>2 A D$
or, $(A B+B D+C D+A C)>2 A D$
Hence, $A B+B C+A C>2 A D \quad[a s, B C=B D+C D]$

Question 10:

M is a point on side $B C$ of a triangle $A B C$ such that $A M$ is the bisector of $\angle B A C$. Is it true to say that perimeter of the triangle is greater than 2 AM? Give a reason for your answer?
Answer: Yes in Triangle ABC, M is the point of side $B C$ such that $A M$ is the bisector of $\angle B A C$.
In triangle $A B M, A B+B M>B M$
In triangle $A C M, A C+C M>A M$

On adding eq(1) and eq(2), we get,
$(A B+B M+A C+C M)>2 A M$
or, $(A B+B M+M C+A C)>2 A M$
or, $A B+B C+A C($ perimeter of triangle $A B C)>2 A M$

Question 11:

Is it possible to construct a triangle with lengths of its sides as $9 \mathrm{~cm}, 7 \mathrm{~cm}$ and 17 cm ? Give a reason for your answer.

Answer: No. Here, we see that $9+7=16<17$
i.e., the sum of two sides of a triangle is less than the third side.

Hence, it contradicts the property that the sum of two sides of a triangle is greater than the third side. Therefore, it is not possible to construct a triangle with given sides.

Question 12:

Is it possible to construct a triangle with lengths of its sides as $8 \mathbf{c m}, 7 \mathbf{c m}$ and 4 cm ? Give a reason for your answer.

Answer: Yes, because in each case the sum of two sides is greater than the third side. i.e.,
$7+4>8$,
$8+4>7,7+8>4$
Hence, it is possible to construct a triangle with given sides.

Exercise 7.3 (Short type question)

Question 1: $A B C$ is an isosceles triangle with $A B=A C$ and $B D, C E$ are its two medians. Show that $B D=C E$.

Answer: Given $\triangle A B C$ is an isosceles triangle in which $A B=A C$ and $B D, C E$ are its two medians.
To show $B D=C E$.

Proof: In triangle ABC and ACE ,
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\angle A=\angle A$ [common angle]
$A D=A E$
Since, $A B=A C$
or, ${ }_{2}^{1} A B=\frac{1}{2} A C$
or, $A E=A D$
As D is the mid-point of $A C$ and E is the mid-point of $A B$.
thus, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$ [by SAS]
Or, $B D=C E[C P C T]$

Question 2: In the figure, D and E are points on side $B C$ of a $\triangle A B C$ such that $B D=C E$ and $A D=A E$. Show that $\triangle A B D \cong \triangle A C E$.

Answer: D and E are the points on side $B C$ of a triangle $A B C$ such that $B D=C E$ and $A D=A E$ [Given]
To proof: $\triangle \mathrm{ABD}=\triangle \mathrm{ACE}$
proof: We have, $A D=A E$ [given]
$\angle A D E=\angle A E D$
We have, $\angle \mathrm{ADB}+\angle \mathrm{ADE}=180^{\circ} \quad$ [Linear pair axiom]
or, $\angle \mathrm{ADB}=180^{\circ}-\angle \mathrm{ADE}=180^{\circ}-\angle \mathrm{AED} . . .[$ from eq(1)]

In triangle ABD and ACE ,
$\angle \mathrm{ADB}=\angle \mathrm{AEC} \quad\left[\mathrm{As}, \angle \mathrm{AEC}+\angle \mathrm{AED}=180^{0}\right.$, linear pair axiom]
$B D=C E$
$\mathrm{AD}=\mathrm{AE}$
$\Delta \mathrm{ABD} \cong \mathrm{ACE}$ [SAS congruency]

Question 3:

In the given figure, $\triangle C D E$ is an equilateral triangle formed on a side $C D$ of a square $A B C D$. Show that $\triangle A D E \cong \triangle B C E$.

Answer: In the figure, triangle CDE is an equilateral triangle formed on a side CD of a square $A B C D$. [Given]
To proof: $\triangle \mathrm{ADE} \cong \triangle \mathrm{BCE}$
Proof: In triangle ADE and BCE,
$D E=C E$ [sides of an equilateral triangle]
$\angle A D E=\angle B C E \quad\left[\right.$ Since, $\angle A D E=\angle B C D=90^{\circ}$ and $\angle E D C=60^{\circ}$,

$$
\left.\angle \mathrm{ADE}=90^{\circ}+60^{\circ}=150^{\circ} \text { and, } \angle \mathrm{BCE}=90^{\circ}+60^{\circ}=150^{\circ}\right]
$$

$A D=B C$
$\Delta \mathrm{ADE} \cong \triangle \mathrm{BCE}$ [SAS congruence]

Question 4:

In the figure, $B A \perp A C, D E \perp D F$ such that $B A=D E$ and $B F=E C$. Show that $\Delta A B C \cong \triangle D E F$.

Thinking Process
Use the RHS congruence rule to show the given result

Answer: In the figure $\mathrm{BA} \perp \mathrm{AC}, \mathrm{DE} \perp \mathrm{DF}$ such that $\mathrm{BA}=\mathrm{DE}$ and $\mathrm{BF}=\mathrm{EC}$ [Given]
To proof: $\triangle A B C \cong \triangle D E F$
Proof: Since, BF = EC
On adding CF on both sides, we get
$B F+C F=E C+C F$
$B C=E F$
In triangle $A B C$ and $D E F$,
$\angle A=\angle D=90^{\circ}[B A \perp A C$ and $D E \perp D F]$
$B C=E F$ [from eq (1)]
$B A=D E$ [given]
Hence, $\triangle A B C=\triangle D E F$ \qquad .[RHS congruence]

Question 5:

If Q is a point oh the side $S R$ of a $\triangle P S R$ such that $P Q=P R$, then prove that $P S$ $>P Q$.
Thinking Process
Use the property of a triangle that if two sides are equal then their opposite angles are also equal. Also, use the property that side opposite to a greater angle is longer.

Answer: Given: In triangle $P S R, Q$ is a point on the side $S R$ such that $P Q=P R$ To prove: PS > PQ

In triangle $\mathrm{PQR}, \mathrm{PQ}=\mathrm{PR}$ [Given]
$\angle \mathrm{R}=\angle \mathrm{PQR}$.
.(1) [angles opposite to equal sides are equal]
But, $\angle P Q R>\angle S$
(2) [Exterior angle of a triangle is greater than each of the interior angle]
From eq(1) and (2),
$\angle R=\angle S$
or, $\mathrm{PS}>\mathrm{PR}$ [side opposite to greater angle is longer]
or, $\mathrm{PS}>\mathrm{PQ}[A s, \mathrm{PQ}=\mathrm{PR}]$

Question 6:

S is any point on the side $Q R$ of a $\triangle P Q R$. Show that $P Q+Q R+R P>2 P S$. Thinking Process
Use the inequality of a triangle i.e., sum of two sides of a triangle is greater than the third side. Further, show the required result.

Answer: In triangle QPR, S is any point on side QR.

To proof: $\mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS}$
Proof: In triangle PQS, PQ + QS > PS
(1) [Sum of two sides of a
triangle is greater than the third side]
Similarly, in Triangle PRS, SR + RP > PS
(2) [Sum of two sides of a triangle is greater than the third side]
On adding eq(1) and (2) we get,
$P Q+Q S+S R+R P>2 P S$
or, $\mathrm{PQ}+(\mathrm{QS}+\mathrm{SR})+\mathrm{RP}>2 \mathrm{PS}$
or, $P Q+Q R+R P>2 P S[$ as, $Q R=Q S+S R]$

Question 7:

D is any point on side $A C$ of a $\triangle A B C$ with $A B=A C$. Show that $C D<B D$.

Answer: In triangle $A B C, D$ is any point on side $A C$ To proof: $C D>B D$ or $B D>C D$

Proof: In triangle $\mathrm{ABC}, \mathrm{AC}=\mathrm{AB}$ [Given]
$\angle A B C=\angle A C B$.(1)[Angles opposite to equal sides are equal]
In triangle $A B C$ and $D B C$,
$\angle \mathrm{ABC}>\angle \mathrm{DBC}$ [Since, $\angle \mathrm{DBC}$ is an internal angle of $\angle \mathrm{B}$]
or, $\angle A C B>\angle D B C$.....[From eq (1)]
or, $\mathrm{BD}>\mathrm{CD}$ [Side opposite to greater angle is longer]
or, $\mathrm{CD}<\mathrm{BD}$

Question 8:

In the given figure $I \| m$ and M is the mid-point of a line segment $A B$. Show that M is also the mid-point of any line segment $C D$, having its endpoints on I and m , respectively.

Answer: In the figure, $I \| m$ and M is the mid-point of a line-segment AB i.e., $\mathrm{AM}=$ BM To proof: $\mathrm{MC}=\mathrm{MD}$ proof: / || m [Given]
$\angle \mathrm{BAC}=\angle \mathrm{ABD}$ [Alternate interior angles]
$\angle A M C=\angle B M D$ [Vertically opposite angles]
In triangle AMC and BMD,
$\angle B A C=\angle A B D$ [proved above]
AM = AM [Given]
and $\angle \mathrm{AMC}=\angle \mathrm{BMD}$ [Proved above]
Hence, $\triangle \mathrm{AMC} \cong \triangle \mathrm{BMD}$ [SAS congruence]
or, $\mathrm{MC}=\mathrm{MD}$ [CPCT]

Question 9:

Bisectors of the angles B and C of an isosceles triangle with $A B=A C$ intersect each other at O. $B O$ is produced to a point M. Prove that $\angle M O C=\angle A B C$.
Answer:
Given Lines, $O B$ and $O C$ are the angle bisectors of $\angle B$ and $\angle C$ of an isosceles $\triangle A B C$ such that $A B=A C$ which intersect each other at O and $B O$ is produced to M.
To prove

$$
\angle M O C=\angle A B C .
$$

Hence proved.

Question 10:

Bisectors of the angles B and C of an isosceles $\triangle A B C$ with $A B=A C$ intersect each other at O. Show that the external angle adjacent to $\angle A B C$ is equal to $\angle B O C$.
Answer:

Given $\triangle A B C$ is an isosceles triangle in which $A B=A C, B O$ and $C O$ are the bisectors of $\angle A B C$ and $\angle A C B$ respectively intersect at O.
To show $\quad \angle D B A=\angle B O C$
Construction Line $C B$ produced to D.

$A B$	$=A C$	[given]
$\angle A C B$	$=\angle A B C$	

[angles opposite to equal sides are equal]
$\Rightarrow \quad \frac{1}{2} \angle A C B=\frac{1}{2} \angle A B C \quad$ [on dividing both sides by 2]
$\Rightarrow \quad \angle O C B=\angle O B C$
(i)

$[\because B O$ and $C O$ are the bisectors of $\angle A B C$ and $\angle A C B$]

[by angle sum property of a triangle]		
\Rightarrow	$\angle O B C+\angle O B C+\angle B O C=180^{\circ}$	[from Eq. (i)]
\Rightarrow	$2 \angle O B C+\angle B O C=180^{\circ}$	
\Rightarrow	$\angle A B C+\angle B O C=180^{\circ}$	$[\because B O$ is the bisector of $\angle A B C]$
\Rightarrow	$180^{\circ}-\angle D B A+\angle B O C=180^{\circ}$	[$\because D B C$ is a straight line]
\Rightarrow	$-\angle D B A+\angle B O C=0$	
\Rightarrow	$\angle D B A=\angle B O C$	

Question 11:

In the following figure if $A D$ is the bisector of $\angle B A C$, then prove that $A B>B D$.

Solution:

Given $A B C$ is a triangle such that $A D$ is the bisector of $\angle B A C$. To prove $A B>B D$. Proof Since, $A D$ is the bisector of $\angle B A C$.
But $\angle B A D=C A D . . .(i)$
$\therefore \angle A D B>\angle C A D$
[exterior angle of a triangle is greater than each of the opposite interior angle]
$\therefore \angle A D B>\angle B A D$ [from Eq. (i)]
$A B>B D$ [side opposite to greater angle is longer]
Hence proved.

Exercise 7.4: (Long Answer Type Questions)

Question 1:

Find all the angles of an equilateral triangle.

Solution:

Let $A B C$ be an equilateral triangle such that $A B=B C=C A$
We have, $\quad A B=A C \Rightarrow \angle C=\angle B$ [angles opposite to equal sides are equal]
Let $\angle C=\angle B=x^{\circ}$
Now, $B C=B A$ $\angle A=\angle C$
[angles opposite to equal sides are equal]
From Eqs. (i) and (ii),

$$
\begin{array}{rlrl}
& & \angle A=\angle B=\angle C & =x \\
\text { Now, in } \triangle A B C, & \angle A+\angle B+\angle C & =180^{\circ} & \text { [by angle sum property of a triangle] } \\
\Rightarrow & x+x+x & =180^{\circ} \\
\Rightarrow & 3 x & =180^{\circ} \\
\therefore & x & =60^{\circ} \\
& & \angle A & =\angle B=\angle C=60^{\circ}
\end{array}
$$

Question 2:

The image of an object placed at point A before a plane mirror LM is seen at point B by an observer at D as shown in the figure. Prove that the image is as far behind the mirror as the object is in front of the mirror.

Solution:

Given An object $O A$ placed at a point $A, L M$ be a plane mirror, D be an observer and $O B$ is the image.
To prove The image is as far behind the mirror as the object is in front of the mirror i.e., $O B=O A$.

Proof $\because C N \perp L M$ and $A B \perp L M$
\Rightarrow

Also,
From Eqs. (i), (ii) and (iii),

$$
\begin{array}{rr}
A B \| C N & \\
\angle A=\angle i & \text { [alternate interior angles] ...(i) } \\
\angle B=\angle r & \text { [corresponding angles]...(ii) } \\
\angle i=\angle r & \text { [} \because \text { incident angle = reflected angle]...(iii) } \\
\angle A=\angle B & \tag{ii}\\
\angle B=\angle A & \text { [proved above] } \\
\angle 1=\angle 2 & \text { [each } 90^{\circ} \text {] } \\
C O=C O & \text { [common side] } \\
C O B \cong \triangle C O A & \text { [by AAS congruence rule] } \\
O B=O A & \text { [by CPCT] }
\end{array}
$$

In $\triangle C O B$ and $\triangle C O A$,
and
$\begin{array}{ll}\therefore & \triangle C O B \cong \triangle C O A \\ \Rightarrow & O B=O A\end{array}$
Hence proved.

Alternate Method

In $\triangle O B C$ and $\triangle O A C$,

$$
\angle 1=\angle 2
$$

[each 90°]
Also, $\quad \angle i=\angle r \quad[\because$ incident angle $=$ reflected angle $] \ldots$ (i)
On multiplying both sides of Eq. (i) by -1 and then adding 90° both sides, we get

	$90^{\circ}-\angle i$	$=90^{\circ}-\angle r$
\Rightarrow	$\angle A C O$	$=\angle B C O$
and	$O C$	$=O C$
\therefore	$\triangle D B C$	$\cong \triangle O A C$

Hence, the image is as far behind the mirror as the object is in front of the mirror.

Question 3:

$A B C$ is an isosceles triangle with $A B=A C$ and D is a point on $B C$ such that $A D \perp B C$ (see figure). To prove that $\angle B A D=\angle C A D$, a student proceeded as follows

In $\triangle A B D$ and $\triangle A C D$, we have
and

$$
\begin{aligned}
A B & =A C \\
\angle B & =\angle C \\
\angle A D B & =\angle A D C \\
\triangle A B D & \cong \triangle A C D \\
\angle B A D & =\angle C A D
\end{aligned}
$$

Therefore,
[by AAS congruence rule]
So,
[by CPCT]
What is the defect in the above arguments?

Solution:

In $\triangle A B C$,

$$
\begin{aligned}
A B & =A C \\
\angle A C B & =\angle A B C \quad \text { [angles oppsoite to the equal sides are equal] }
\end{aligned}
$$

\Rightarrow
In $\triangle A B D$ and $\triangle A C D$,

$$
A B=A C
$$

[given]

	$A B=A C$	[given]
	$\angle A B D=\angle A C D$	[proved above]
	$\angle A D B=\angle A D C$	[each 90°]
\therefore	$\triangle A B D \cong \triangle A C D$	[by AAS]
So,	$\angle B A D=\angle C A D$	[by CPCT]

$$
\angle A B D=\angle A C D
$$

$$
\angle A D B=\angle A D C
$$

So, the defect in the given argument is that firstly prove $\angle A B D=\angle A C D$
Hence, $\angle A B D=\angle A C D$ is defect.

Question 4:

P is a point on the bisector of $\angle A B C$. If the line through P, parallel to $B A$ meets $B C$ at Q, prove that BPQ is an isosceles triangle.

Solution:

Given we have P is a point on the bisector of $\angle A B C$ and draw the line through P parallel to $B A$ and meet $B C$ at Q.

To prove $\triangle B P Q$ is an isosceles triangle.

Proof	$\angle 1=\angle 2$	$[\because B P$ is bisector of $\angle B$ (given)]	
Now,	$\angle 1=\angle 3$	[alternate interior angles as $P Q \\| A B$]	
\therefore	$\angle 2=\angle 3$		
\Rightarrow	$P Q=B Q$	[sides opposite to equal angles are equal]	
Hence, $\triangle B P Q$ is an isosceles triangle.			

Question 5:

$A B C D$ is a quadrilateral in which $A B=B C$ and $A D=C D$. Show that $B D$ bisects both the angles $A B C$ and $A D C$.
Thinking Process
Firstly, use the property that if two sides of a triangle are equal, then their opposite angles are equal. Further, show that $\triangle B A D$ and $\triangle B C D$ are congruent by the SAS rule.

Solution:

Given $A B C D$ is a quadrilateral in which $A B=B C$ and $A D=C D$.
To show $B D$ bisects both the angles $A B C$ and $A D C$.
Proof Since,

$$
\begin{equation*}
A B=B C \tag{given}
\end{equation*}
$$

$\angle 2=\angle 1$
\therefore
[angles opposite to equal sides are equal]
and
$A D=C D$
[given]
\Rightarrow

$$
\angle 4=\angle 3
$$

[angles opposite to equal sides are equal]
On adding Eqs. (i) and (ii), we get

$$
\begin{align*}
& & \angle 2+\angle 4 & =\angle 1+\angle 3 \\
\Rightarrow & & \angle B C D & =\angle B A D \tag{iii}
\end{align*}
$$

In $\triangle B A D$ and $\grave{\triangle} B C D$,

$$
\begin{aligned}
A B & =B C \\
\angle B A D & =\angle B C D \\
A D & =C D \\
\triangle B A D & \cong \triangle B C D
\end{aligned}
$$

[given]
[from Eq. (iii)]
[given]
[by SAS congruence rule]

Hence, $\angle A B D=\angle C B D$ and $\angle A D B=\angle C D B$ i.e., $B D$ bisects the angles $A B C$ and $A D C$.
[by CPCT]

Question 6:

$A B C$ is a right triangle with $A B=A C$. If bisector of $\angle A$ meets $B C$ at D, then prove that $B C=2 A D$.

Solution:

Given $\triangle A B C$ is a right angled triangle with $A B=A C, A D$ is the bisector of $\angle A$.

To prove
Proof in $\triangle A B C$,
\Rightarrow

$$
\begin{aligned}
& B C=2 A D \\
& A B=A C \\
& \angle C=\angle B
\end{aligned}
$$

[angles opposite to equal sides are equal]
Now, in right angled $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$
[by angle sum property of a triangle in 180°]

$$
\begin{array}{lr}
\Rightarrow & 90^{\circ}+\angle B+\angle B=180^{\circ} \\
\Rightarrow & 2 \angle B=90^{\circ} \\
\Rightarrow & \angle B=45^{\circ} \\
\Rightarrow & \angle B=\angle C=45^{\circ} \\
\text { or } & \angle 3=\angle 4=45^{\circ} \\
\text { Now, } & \angle 1=\angle 2=45^{\circ} \\
\therefore & \angle 1=\angle 3, \angle 2=\angle 4 \\
\Rightarrow & B D=A D, D C=A D
\end{array}
$$

[from Eq. (i)]
[sides opposite to equal angles are equal]
Hence, $B C=B D+C D=A D+A D \Rightarrow B C=2 A D$
[from Eq. (ii)]
Hence proved.

Question 7:

O is a point in the interior of a square $A B C D$ such that $O A B$ is an equilateral triangle.
Show that $\triangle O C D$ is an isosceles triangle.

Solution:

Given O is a point in the interior of a square $A B C D$ such that $\triangle O A B$ is an equilateral triangle.

Construction Join $O C$ and $O D$.
To show $\triangle O C D$ is an isosceles triangle.
Proof Since, $A O B$ is an equilateral triangle.
$\therefore \quad \angle O A B=\angle O B A=60^{\circ}$
Also, $\quad \angle D A B=\angle C B A=90^{\circ} \quad$...(ii) [each angle of a square is 90°]
$[\because A B C D$ is a square]
On subtracting Eq. (i) from Eq. (ii), we get

$$
\begin{aligned}
\angle D A B-\angle O A B & =\angle C B A-\angle O B A=90^{\circ}-60^{\circ} \\
\angle D A O & =\angle C B O=30^{\circ}
\end{aligned}
$$

i.e.,

In $\triangle A O D$ and $\triangle B O C$,

$$
A O=B O
$$

[all the side of an equilateral triangle are equal]
and $\angle D A O=\angle C B O$
[proved above] $A D=B C$
Hence, $\triangle A O D \cong \triangle B O C$ [sides of a square are equal] [by SAS congruence rule] $O D=O C$ [by CPCT]
In $\triangle C O D$,

$$
O C=O D
$$

Hence, $\triangle C O D$ is an isosceles triangle.
Hence proved.

Question 8:

$A B C$ and DBC are two triangles on the same base $B C$ such that A and D lie on the opposite sides of $B C, A B=A C$ and $D B=D C$. Show that $A D$ is the perpendicular bisector of $B C$.

Solution:

Given Two $\triangle A B C$ and $\triangle D B C$ are formed on the same base $B C$ such that A and D lie on the opposite sides of $B C$ such that $A B=A C$ and $D B=D C$. Also $A D$ intersects $B C$ at O.
To show $A D$ is the perpendicular bisector of $B C$ i.e., $A D \perp B C$ and $A D$ bisects $B C$.
Proof in $\triangle A B D$ and $\triangle A C D$,

	$A B=A C$	[given]
	$A D=A D$	[common side]
and	$B)=D C$	[given]
\therefore	$\triangle A B D$	$\cong \triangle A C D$
\Rightarrow	$\angle B A D$	$=\angle C A D$
[ie.,	$\angle B A O$	$=\angle C A O$
In $\triangle A O B$ and $\triangle A O C$,		

> [given]
> [common side]
> [proved above]
> and
> $\angle B A O=\angle C A O$
> $\triangle A O B \cong \triangle A O C$
> [by SAS congruence rule]
> $B O=O C$
> \Rightarrow
> $\angle A O B=\angle A O C$
> [by CPCT]
> [by CPCT]...(i)
> But $\quad \angle A O B+\angle A O C=180^{\circ}$
> $\Rightarrow \quad \angle A O B+\angle A O B=180^{\circ}$
> $\Rightarrow \quad 2 \angle A O B=180^{\circ}$
> $\Rightarrow \quad \angle A O B=\frac{180^{\circ}}{2}=90^{\circ}$
> [linear pair axiom]
> [from Eq. (i)]

Hence, $A D \perp B C$ and $A D$ bisects $B C$ i.e., $A D$ is the perpendicular bisector of $B C$.

Question 9:

If $A B C$ is an isosceles triangle in which $A C=B C, A D$ and $B E$ are respectively two altitudes to sides $B C$ and $A C$, then prove that $A E=B D$.

Solution:

Given $\triangle A B C$ is an isosceles triangle in which $A C=B C$. Also, $A D$ and $B E$ are two altitudes to sides $B C$ and $A C$, respectively.
To prove $A E=B D$.
Proof In $\triangle A B C$,

$$
\begin{aligned}
A C & =B C \\
\angle A B C & =\angle C A B
\end{aligned}
$$

[given]
[angles opposite to equal sides are equal]

$$
\begin{aligned}
& \text { i.e., } \quad \angle A B D=\angle E A B \\
& \text { In } \triangle A E B \text { and } \triangle B D A \text {, } \\
& \angle A E B=\angle A D B=90^{\circ} \\
& \angle E A B=\angle A B D \\
& \text { and } \\
& \therefore \\
& \Rightarrow \\
& A B=A B \\
& \therefore \quad \triangle A E B \cong \triangle B D A \\
& A E=B D \\
& \text { [given, } A D \perp B C \text { and } B E \perp A C \text {] } \\
& \text { [from Eq. (i)] } \\
& \text { [common side] } \\
& \text { [by AAS congruence rule] } \\
& \text { [by CPCT] } \\
& \text { Hence proved. }
\end{aligned}
$$

Question 10:

Prove that sum of any two sides of a triangle is greater than twice the median concerning the third side.

Solution:

Given $\ln \triangle A B C, A D$ is a median.

Construction

Produce $A D$ to a point E such that $A D=D E$ and join $C E$.

To prove

Proof $\ln \triangle A B D$ and $\triangle E C D$,

	$A D=D E$	[by construction]
	$B D=C D$	[given $A D$ is the median]
and	$\angle A D B=\angle C D E$	[vertically opposite angle]
\therefore	$\triangle A B D \cong \triangle E C D$	[by SAS congruence rule]
\Rightarrow	$A B=C E$	[by CPCT] ...(i)

Now, in $\triangle A E C$,

$$
\begin{aligned}
& & A C+E C>A E \\
\therefore & & A C+A B>2 A D
\end{aligned}
$$

[sum of two sides of a triangle is greater than the third side]
[from Eq. (i) and also taken that $A D=D E$]
Hence proved.

Question 11:

Show that in a quadrilateral $A B C D, A B+B C+C D+D A<2(B D+A C)$
Thinking Process

Firstly, draw a quadrilateral $A B C D$. Further, use the property of a triangle that the sum of two sides of a triangle is greater than the third side and show the required result.

Solution:

Given $A B C D$ is a quadrilateral.
To show $\quad A B+B C+C D+D A<2(B D+A C)$
Construction Join diagonals $A C$ and $B D$.
Proof in $\triangle O A B, \quad O A+O B>A B$
[sum of two sides of a triangle is greater than the third side]
In $\triangle O B C$,
$O B+O C>B C$
[sum of two sides of a triangle is greater than the third side]

[sum of two sides of a triangle is greater than the third side]
In $\triangle O D A$,

$$
\begin{equation*}
O D+O A>D A \tag{iv}
\end{equation*}
$$

[sum of two sides of a triangle is greater than the third side]
On adding Eqs. (i), (ii), (iii) and (iv); we get

$$
\begin{array}{cc}
& 2[(O A+O B+O C+O D]>A B+B C+C D+D A \\
\Rightarrow & 2[(O A+O C)+(O B+O D)]>A B+B C+C D+D A \\
\Rightarrow & 2(A C+B D)>A B+B C+C D+D A \\
\Rightarrow & \\
& \\
& A B+B C+C D+D A<2(B D+A C)
\end{array}
$$

Question 12:

Show that in a quadrilateral $A B C D, A B+B C+C D+D A>A C+B D$.
Solution:
Given $A B C D$ is a quadrilateral.

Construction

Join diagonals $A C$ and $B D$.

To show
in $\triangle A B C$,
In $\triangle B C D$,
In $\triangle C D A$,
In $\triangle D A B$,

$$
\begin{align*}
& A B+B C+C D+D A>A C+B D \\
& A B+B C>A C \tag{i}
\end{align*}
$$

[sum of two sides of a triangle is greater than the third side]
$B D$...(ii)
[sum of two sides of a triangle is greater than the third side]
(i) - (i)
sum of two sides of a triangle is greater than the third side
On adding Eqs. (i), (ii), (iii) and (iv), we get

$$
\begin{array}{ll}
& 2(A B+B C+C D+D A)>2(A C+B D) \\
\Rightarrow & A B+B C+C D+D A>A C+B D
\end{array}
$$

[sum of two sides of a triangle is greater than the third side]

Question 13:

In $A A B C, D$ is the mid-point of side $A C$ such that $B D=1 / 2 A C$. Show that $\angle A B C$ is a right angle.

Solution:

Given $\ln \triangle A B C, D$ is the mid-point of $A C$ i.e., $A D=C D$ such that $B D=\frac{1}{2} A C$.
To show $\angle A B C=90^{\circ}$

$$
\begin{equation*}
\text { Proof We have, } \quad B D=\frac{1}{2} A C \tag{i}
\end{equation*}
$$

Since, D is the mid-point of $A C$.

$$
\begin{equation*}
\therefore \quad A D=C D=\frac{1}{2} A C \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii),

In $\triangle D A B$,	$A D=C D=B D$	
	$A D=B D$	[proved above]
\therefore	$\angle A B D=\angle B A D$...(iii)
		[angles opposite to equal sides are equal]
In $\triangle D B C$,	$B D=C D$	[proved above]
\therefore	$\angle B C D=\angle C B D$...(iv)
		[angles opposite to equal sides are equal]
In $\triangle A B C$,	$\angle A B C+\angle B A C+\angle A C B=180^{\circ}$	[by angle sum property of a triangle]
\Rightarrow	$\angle A B C+\angle B A D+\angle D C B=180^{\circ}$	
\Rightarrow	$\angle A B C+\angle A B D+\angle C B D=180^{\circ}$	[from Eqs.(iii) and (iv)]
\Rightarrow	$\angle A B C+\angle A B C=180^{\circ}$	
\Rightarrow	$2 \angle A B C=180^{\circ}$	
\Rightarrow	$\angle A B C=90^{\circ}$	

Question 14:

In a right triangle, prove that the line-segment joining the mid-point of the hypotenuse to the opposite vertex is half the hypotenuse.

Solution:

Given $\ln \triangle A B C, \angle B=90^{\circ}$ and D is the mid-point of $A C$.
Construction Produce $B D$ to E such that $B D=D E$ and join $E C$.
To provè

$$
B D=\frac{1}{2} A C
$$

Proof $\ln \triangle A D B$ and $\triangle C D E$,

$$
\begin{aligned}
A D & =D C \\
B D & =D E \\
\angle A D B & =\angle C D E \\
\triangle A D B & \cong \triangle C D E \\
A B & =E C \\
\angle B A D & =\angle D C E
\end{aligned}
$$

and
\Rightarrow
and
$[\because$ D is mid-point of $A C]$
[by construction] [vertically opposite angles] [by SAS congruence rule]
[by CPCT]
[by CPCT]
But $\angle B A D$ and $\angle D C E$ are alternate angles.
So, $E C \| A B$ and $B C$ is a transversal.

\therefore	$\angle A B C+\angle B C E=180^{\circ}$	[cointerior angles]
\Rightarrow	$90^{\circ}+\angle B C E=180^{\circ}$	$\left[\because \angle A B C=90^{\circ}\right.$, given]
\Rightarrow	$\angle B C E=180^{\circ}-90^{\circ}$	
\Rightarrow	$\angle B C E=90^{\circ}$	
In $\triangle A B C$ and $\triangle E C B$,	$A B=E C$	[proved above]
and	$B C=C B$	[common side]
\therefore	$\angle A B C=\angle E C B$	[each 90°]
\Rightarrow	$\triangle A B C \cong \triangle E C B$	[by SAS congruence rule]
\Rightarrow	$A C=E B$	[by $C P C T$]
\Rightarrow	$\frac{1}{2} E B=\frac{1}{2} A C$	[dividing both sides by 2]
	$B D=\frac{1}{2} A C$	Hence proved.

Question 15:

Two lines I and m intersect at point 0 and P is a point on passing through point 0 such that P is equidistant from I and m. Prove that n is the bisector of the angle formed by I and m .

Solution:

Given Two lines l and m intersect at the point O and P is a point on a line n passing through O such that P is equidistant from l and m. i.e., $P Q=P R$.

To prove n is the bisector of the angle formed by l and m i.e., n is the bisector of $\angle Q O R$. Proof in $\triangle O Q P$ and $\triangle O R P$,

$$
\angle P Q O=\angle P R O=90^{\circ}
$$

[since, P in equidistant from l and m, so $P Q$ and $P R$ should be perpendicular to lines l and m respectively]

		$O P$	$=O P$
		$P Q$	$=P R$
\Rightarrow	$\triangle O Q P$	$\cong \triangle O R P$	
\Rightarrow	$\angle P O Q$	$=\angle P O R$	

Hence, n is the bisector of $\angle Q O R$.

Question 16:

The line segment joining the mid-points M and N of parallel sides $A B$ and $D C$, respectively of a trapezium $A B C D$ is perpendicular to both the sides $A B$ and $D C$.
Prove that $A D=B C$.
Solution:

Given In trapezium $A B C D$, points M and N are the mid-points of parallel sides $A B$ and $D C$ respectively and join $M N$, which is perpendicular to $A B$ and $D C$.
To prove $\quad A D=B C$
Proof Since, M is the mid-point of $A B$.

\therefore	$A M=M B$	
Now, in $\triangle A M N$ and $\triangle B M N$,	$A M=M B$	[proved above]
.	$\angle 3=\angle 4$	[each 90\%]
.	$M N=M N$	[common side]
\therefore	$\triangle A M N \cong B M N$	[by SAS congruence rule]
\therefore	$\angle 1=\angle 2$	[by CPCT]

On multiplying both sides of above equation by -1 and than adding 90° both sides, we get

$$
\begin{array}{lc}
& 90^{\circ}-\angle 1=90^{\circ}-\angle 2 \\
\Rightarrow & \angle A N D=\angle B N C \tag{i}
\end{array}
$$

Now, in $\triangle A D N$ and $\triangle B C N$,

	$\angle A N D=\angle B N C$	[from Eq. (i)]
	$A N=B N$	$[\because \triangle A M N \cong \triangle B M N]$
and	$D N=N C$	[$\because N$ is the mid-point of $C D$ (given)]
\therefore	$\triangle A D N \cong \triangle B C N$	[by SAS congruence rule]
Hence,	$A D=B C$	[by CPCT]
		Hence proved.

Question 17:

If $A B C D$ is a quadrilateral such that diagonal $A C$ bisects the angles A and C, then prove that $A B=A D$ and $C B=C D$.

Solution:

Given In a quadrilateral $A B C D$, diagonal $A C$ bisects the angles A and C.

To prove $A B=A D$ and $C B=C D$
Proof in $\triangle A D C$ and $\triangle A B C$,

	$\begin{aligned} & \angle D A C=\angle B A C \\ & \angle D C A=\angle B C A \end{aligned}$	$[\because A C$ is the bisector of $\angle A$ and $\angle C$ $[\because A C$ is the bisector of $\angle A$ and $\angle C]$
and	$A C=A C$	[common side]
\therefore	$\triangle A D C \cong \triangle A B C$	[by ASA congruence rule]
	- $A D=A B$	[by CPCT]
and	$C D=C B$	[by CPCT]

Question 18:

If $A B C$ is a right-angled triangle such that $A B=A C$ and bisector of angle C intersects the side $A B$ at D, then prove that $A C+A D=B C$.
Solution:

Given In right angled $\triangle A B C, A B=A C$ and $C D$ is the bisector of $\angle C$.
Construction Draw $D E \perp B C$.
To prove $\quad A C+A D=B C$
Proof in right angled $\triangle A B C, A B=A C$ and $B C$ is a hypotenuse
[given]
$\therefore \quad \angle A=90^{\circ}$
In $\triangle D A C$ and $\triangle D E C$,

$$
\angle A=\angle 3=90^{\circ}
$$

	$\angle 1$	$=\angle 2$
\therefore	$D C$	$=D C$
\Rightarrow	$\triangle D A C$	$\cong \triangle D E C$
and	$D A$	$=D E$.
In $\triangle A B C$,	$A C$	$=E C$
	$A B$	$=A C$
	$\angle C$	$=\angle B$

[given, $C D$ is the bisector of $\angle C$]
[common sides]
[by AAS congruence rule]
[angles opposite to equal sides are equal]
Again, in $\triangle A B C, \quad \angle A+\angle B+\angle C=180^{\circ}$
[by angle sum property of a triangle]
$\begin{array}{rlrl}\Rightarrow & 90^{\circ}+\angle B+\angle B & =180^{\circ} \\ \Rightarrow & 2 \angle B=180^{\circ}-90^{\circ} \\ \Rightarrow & 2 \angle B=90^{\circ} \\ \Rightarrow & \angle B=45^{\circ} \\ \ln \triangle B E D_{,} & \angle 5 & =180^{\circ}-(\angle B+\angle 4)\end{array}$
[by angle sum property of a triangle]
$=180^{\circ}-\left(45^{\circ}+90^{\circ}\right)$
$=180^{\circ}-135^{\circ}=45^{\circ}$
$\therefore \quad \angle B=\angle 5$
\Rightarrow $D E=B E \quad[\because$ sides opposite to equal angles are equal]
From Eqs. (i) and (iv),

$$
\begin{array}{rlrl}
& & D A & =D E=B E \tag{v}\\
\because & B C & =C E+E B \\
& & =C A+D A \\
\therefore & A D+A C & =B C
\end{array}
$$

[from Eqs. (ii) and (v)]
Hence proved.

Question 19:

If $A B$ and $C D$ are the smallest and largest sides of a quadrilateral $A B C D$, out of $\angle B$ and $\angle \mathrm{D}$ decide which is greater.

Solution:

Given In quadrilateral $A B C D_{i} A B$ is the smallest and $C D$ is the largest side To find $\angle B>\angle D$ or $\angle D>\angle B$.

Construction Join $B D$.

Now, in $\triangle A B D$,	$A D>A B$
\Rightarrow	$\angle 1>\angle 3$
$\ln \triangle B C D$,	$C D>B C$
\Rightarrow	$\angle 2>\angle 4$

[since, $A B$ is the smallest side in $A B C D$] [angle opposite to larger side is greater]...(i)
[since, $C D$ is the largest side in $A B C D$]
[angle opposite to larger side is greater]...(ii)
On adding Eqs. (i) and (ii), we get
Hence,

$$
\begin{gathered}
\angle 1+\angle 2>\angle 3+\angle 4 \\
\angle B>\angle D
\end{gathered}
$$

Question 20:

Prove that in a triangle, other than an equilateral triangle, the angle opposite the longest side is greater than $2 / 3$ of a right angle.
Solution:
Consider $\triangle A B C$ in which $B C$ is the longest side.
To prove
Proof In $\triangle A B C$,
$\angle A=\frac{2}{3}$ right angle
$B C>A B$.
[consider $B C$ is the largest side]
\Rightarrow
and
\Rightarrow
On adding Eqs. (i) and (ii), we get

| | $2 \angle A>\angle B+\angle C$ |
| :--- | :---: | :--- |
| \Rightarrow | $2 \angle A+\angle A>\angle A+\angle B+\angle C \quad$ [adding $\angle A$ both sides] |
| \Rightarrow | $3 \angle A>\angle A+\angle B+\angle C$ |
| \Rightarrow | $3 \angle A>180^{\circ} \quad$ [sum of all the angles of a triangle is 180°] |
| \Rightarrow | $\angle A>\frac{2}{3} \times 90^{\circ}$ |
| i.e., | $\angle A>\frac{2}{3}$ of a right angle |

Question 21:

If $A B C D$ is quadrilateral such that $A B=A D$ and $C B=C D$, then prove that $A C$ is
the perpendicular bisector of BD.

Solution:

Given In quadrilateral $A B C D, A B=A D$ and $C B=C D$.
Construction Join AC and BD.
To prove $A C$ is the perpendicular bisector of BD.

Proof $\ln \triangle A B C$ and $\triangle A D C$,

Prot	$A B=A D$	[given]
	$B C=C D$	[given]
and	$A C=A C$	[common side]
\therefore	$\triangle A B C \cong \triangle A D C$	[by SSS congruence rule]
\Rightarrow	$\angle 1=\angle 2$	[by CPCT]
Now, in $\triangle A O B$ and $\triangle A O D$,	$A B=A D$	[given]
\Rightarrow	$\angle 1=\angle 2$	[proved above]
and	$A O=A O$	[common side]
\because	$\triangle A O B \cong \triangle A O D$	[by SAS congruence rule]
\Rightarrow	$B O=D O$	[by CPCT]
and	$\angle 3=\angle 4$	[by CPCT] ...(i)
But	$\angle 3+\angle 4=180^{\circ}$	[linear pair axiom]
	$\angle 3+\angle 3=180^{\circ}$	[from Eq. (i)]
\Rightarrow	$\begin{array}{r} 2 \angle 3=180^{\circ} \\ 180^{\circ} \end{array}$	
\Rightarrow	$\angle 3=\frac{180}{2}$	
\therefore	$\angle 3=90^{\circ}$	
i.e., $A C$ is perpendicular bi	or of BD.	

