Important Questions

Chapter 1: Number Systems

Q.1: Find five rational numbers between 1 and 2.

Solution: We have to find five rational numbers between 1 and 2 .
So, let us write the numbers with denominator $5+1=6$
Thus, $6 / 6=1,12 / 6=2$
From this, we can write the five rational numbers between $6 / 6$ and $12 / 6$ as:
7/6, 8/6, 9/6, 10/6, 11/6
Q.2: Find five rational numbers between $3 / 5$ and $4 / 5$.

Solution: We have to find five rational numbers between $3 / 5$ and $4 / 5$.
So, let us write the given numbers by multiplying with $6 / 6$, (here $6=5+1$)
Now,
$3 / 5=(3 / 5) \times(6 / 6)=18 / 30$
$4 / 5=(4 / 5) \times(6 / 6)=24 / 30$
Thus, the required five rational numbers will be: 19/30, 20/30, 21/30, 22/30, 23/30
Q.3: Locate $\sqrt{ } 3$ on the number line.

Solution:

Construct $B D$ of unit length perpendicular to $O B$ (here, $O A=A B=1$ unit) as shown in the figure.
By Pythagoras theorem,
$O D=\sqrt{ }(2+1)=\sqrt{ } 3$
Taking O as the centre and OD as radius, draw an arc that intersects the number line at point Q using a compass. Therefore, Q corresponds to the value of $\sqrt{ } 3$ on the number line.
Q.4: Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is rational.
Solution: No, since the square root of a positive integer 16 is equal to 4 . Here, 4 is a rational number.
Q.5: Find the decimal expansions of $10 / 3,7 / 8$ and $1 / 7$.

Solution:

Therefore, $10 / 3=3.3333 \ldots$
$7 / 8=0.875$
$1 / 7=0.1428571 \ldots$
Q.6: Show that $0.3333 \ldots=1 / 3$ can be expressed in the form p / q, where p and q are integers and $q \neq 0$.

Solution:

Let $x=0.3333 \ldots$.
Multiply with 10,
$10 x=3.3333 \ldots$
Now, $3.3333 \ldots=3+x$ (as we assumed $x=0.3333 \ldots$)
Thus, $10 x=3+x$
$10 x-x=3$
$9 x=3$
$x=1 / 3$
Therefore, $0.3333 \ldots=1 / 3$. Here, $1 / 3$ is in the form of p / q and $q \neq 0$.
Q.7: What can the maximum number of digits be in the repeating block of digits in the decimal expansion of $1 / 17$? Perform the division to check your answer.

Solution:

Thus, $1 / 17=0.0588235294117647 \ldots$
Therefore, $1 / 17$ has 16 digits in the repeating block of digits in the decimal expansion.
Q.8: Find three different irrational numbers between the rational numbers $5 / 7$ and 9/11.

Solution: The given two rational numbers are $5 / 7$ and $9 / 11$.
5/7 $=0.714285714 \ldots$.
$9 / 11=0.81818181$
Hence, the three irrational numbers between $5 / 7$ and $9 / 11$ can be:
0.720720072000...
0.730730073000...
0.808008000...
Q.9: Visualise 3.765 on the number line, using successive magnification.

Solution:

Visualisation of 3.765 on the number line, using successive magnification is given below:

3.765
Q.10: Add $2 \sqrt{ } 2+5 \sqrt{ } 3$ and $\sqrt{ } 2-3 \sqrt{ } 3$.

Solution:

$(2 \sqrt{ } 2+5 \sqrt{ } 3)+(\sqrt{ } 2-3 \sqrt{ } 3)$
$=2 \sqrt{ } 2+5 \sqrt{ } 3+\sqrt{ } 2-3 \sqrt{ } 3$
$=(2+1) \sqrt{ } 2+(5-3) \sqrt{ } 3$
$=3 \sqrt{ } 2+2 \sqrt{ } 3$
Q.11: Simplify: $(\sqrt{ } 3+\sqrt{ } 7)(\sqrt{3}-\sqrt{ } 7)$.

Solution:

$(\sqrt{ } 3+\sqrt{ } 7)(\sqrt{ } 3-\sqrt{ } 7)$
Using the identity $(a+b)(a-b)=a^{2}-b^{2}$,
$(\sqrt{ } 3+\sqrt{ } 7)(\sqrt{ } 3-\sqrt{ } 7)=(\sqrt{ } 3)^{2}-(\sqrt{ } 7)^{2}$
$=3-7$
$=-4$
Q.12: Rationalise the denominator of $1 /[7+3 \sqrt{ } 3]$.

Solution:

$1 /(7+3 \sqrt{ } 3)$

By rationalizing the denominator,
$=[1 /(7+3 \sqrt{ } 3)][(7-3 \sqrt{ } 3) /(7-3 \sqrt{ } 3)]$
$=(7-3 \sqrt{ } 3) /\left[(7)^{2}-(3 \sqrt{ } 3)^{2}\right]$
$=(7-3 \sqrt{ } 3) /(49-27)$
$=(7-3 \sqrt{ } 3) / 22$
Q.13: Represent $\sqrt{ }(9.3)$ on the number line.

Solution:

Representation of $\sqrt{ } 9.3$ on the number line is given below:

Q.14: Simplify:
(i) $7^{2 / 3} .7^{1 / 5}$
(ii) $10^{1 / 2 / 10^{1 / 4}}$

Solution:
(i) $7^{2 / 3} .7^{1 / 5}$

Bases are equal, so add the powers.
$7^{(2 / 3+1 / 5)}$
$=7^{(10+3) / 15}$
$=7^{13 / 15}$
(ii) $10^{1 / 2 / 10^{1 / 4}}$

Bases are equal, so subtract the powers.
$=10{ }^{(1 / 2-1 / 4)}$
$=10^{1 / 4}$
Q.15: What is the product of a rational and an irrational number?
a) Always an integer
b) Always a rational number
c) Always an irrational number
d) Sometimes rational and sometimes irrational

Correct Answer: Option (c)
Explanation:
The product of a rational and an irrational number is always an irrational number.
For example, 2 is a rational number and $\sqrt{ } 3$ is irrational. Thus, $2 \sqrt{ } 3$ is always an irrational number.
Q.16: What is the value of $(256)^{0.16} \mathrm{X}(256)^{0.09}$?
a) 4
b) 16
c) 64
d) 256.25

Correct answer: Option (a)
$(256)^{0.16} \times(256)^{0.09}=(256)^{(0.16+0.09)}$
$=(256)^{0.25}$
$=(256)^{(25 / 100)}$
$=(256)^{(1 / 4)}$
$=\left(4^{4}\right)^{(1 / 4)}$
$=4^{4(1 / 4)}$
$=4$
Q. 17: Are the square roots of all the positive integers irrational? If not, give an example of the square root of a number that is rational.

Solution: We know that the square root of every positive integer will not yield an integer.
We know that, $\sqrt{4}$ is 2 , which is an integer. But $\sqrt{7}$ or $\sqrt{10}$ will give an irrational number. Thus, we can conclude that the square roots of every positive number are not an irrational number.

