Important Questions Chapter 1: Number Systems

Q.1: Find five rational numbers between 1 and 2.

Solution: We have to find five rational numbers between 1 and 2. So, let us write the numbers with denominator 5 + 1 = 6Thus, 6/6 = 1, 12/6 = 2From this, we can write the five rational numbers between 6/6 and 12/6 as: 7/6, 8/6, 9/6, 10/6, 11/6

Q.2: Find five rational numbers between 3/5 and 4/5.

Solution: We have to find five rational numbers between 3/5 and 4/5. So, let us write the given numbers by multiplying with 6/6, (here 6 = 5 + 1) Now, $3/5 = (3/5) \times (6/6) = 18/30$

 $4/5 = (4/5) \times (6/6) = 24/30$

Thus, the required five rational numbers will be: 19/30, 20/30, 21/30, 22/30, 23/30

Q.3: Locate $\sqrt{3}$ on the number line.

Solution:

Construct BD of unit length perpendicular to OB (here, OA = AB = 1 unit) as shown in the figure.

By Pythagoras theorem, OD = $\sqrt{(2 + 1)} = \sqrt{3}$

Taking O as the centre and OD as radius, draw an arc that intersects the number line at point Q using a compass. Therefore, Q corresponds to the value of $\sqrt{3}$ on the number line.

Q.4: Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is rational.

Solution: No, since the square root of a positive integer 16 is equal to 4. Here, 4 is a rational number.

Q.5: Find the decimal expansions of 10/3, 7/8 and 1/7.

Solution:

	3.333	_ 1	0.875		0.142857
3	10	8	7.0	- 7	1.0
	9		64		7
	10		60		30
	9		56		28
	10		40		20
	9		40		14
	10		0		60
	9				56
	1				40
					35
					50
					49
					1

Therefore, 10/3 = 3.3333... 7/8 = 0.875 1/7 = 0.1428571...

Q.6: Show that 0.3333... = 1/3 can be expressed in the form p/q, where p and q are integers and $q \neq 0$.

Solution:

Let x = 0.3333.... Multiply with 10, 10x = 3.3333...Now, 3.3333... = 3 + x (as we assumed x = 0.3333...) Thus, 10x = 3 + x 10x - x = 3 9x = 3 x = 1/3Therefore, 0.3333... = 1/3. Here, 1/3 is in the form of p/q and q $\neq 0$.

Q.7: What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17? Perform the division to check your answer.

Solution:

Thus, 1/17 = 0.0588235294117647....

Therefore, 1/17 has 16 digits in the repeating block of digits in the decimal expansion.

Q.8: Find three different irrational numbers between the rational numbers 5/7 and 9/11.

Solution: The given two rational numbers are 5/7 and 9/11. 5/7 = 0.714285714..... 9/11 = 0.81818181...... Hence, the three irrational numbers between 5/7 and 9/11 can be: 0.720720072000... 0.730730073000... 0.808008000...

Q.9: Visualise 3.765 on the number line, using successive magnification.

Solution:

Visualisation of 3.765 on the number line, using successive magnification is given below:

Q.10: Add $2\sqrt{2}$ + $5\sqrt{3}$ and $\sqrt{2}$ - $3\sqrt{3}$.

Solution:

$$(2\sqrt{2} + 5\sqrt{3}) + (\sqrt{2} - 3\sqrt{3})$$

= $2\sqrt{2} + 5\sqrt{3} + \sqrt{2} - 3\sqrt{3}$
= $(2 + 1)\sqrt{2} + (5 - 3)\sqrt{3}$
= $3\sqrt{2} + 2\sqrt{3}$
Q.11: Simplify: $(\sqrt{3} + \sqrt{7}) (\sqrt{3} - \sqrt{7})$.
Solution:
 $(\sqrt{3} + \sqrt{7})(\sqrt{3} - \sqrt{7})$
Using the identity $(a + b)(a - b) = a^2 - b^2$,
 $(\sqrt{3} + \sqrt{7})(\sqrt{3} - \sqrt{7}) = (\sqrt{3})^2 - (\sqrt{7})^2$
= $3 - 7$

Q.12: Rationalise the denominator of $1/[7+3\sqrt{3}]$.

Solution:

1/(7 + 3√3)

By rationalizing the denominator,

$$= [1/(7 + 3\sqrt{3})] [(7 - 3\sqrt{3})/(7 - 3\sqrt{3})]$$

= (7 - 3\sqrt{3})/[(7)² - (3\sqrt{3})²]
= (7 - 3\sqrt{3})/(49 - 27)
= (7 - 3\sqrt{3})/22

Q.13: Represent $\sqrt{(9.3)}$ on the number line.

Solution:

Representation of $\sqrt{9.3}$ on the number line is given below:

Q.14: Simplify:

(i) 7^{2/3}.7^{1/5} (ii) 10^{1/2}/10^{1/4}

Solution:

(i) 7^{2/3}.7^{1/5}

Bases are equal, so add the powers.

 $7^{(2/3 + 1/5)}$

 $= 7^{(10 + 3)/15}$

 $= 7^{13/15}$

(ii) 10^{1/2}/10^{1/4}

Bases are equal, so subtract the powers.

 $= 10^{(1/2 - 1/4)}$

 $= 10^{1/4}$

Q.15: What is the product of a rational and an irrational number?

a) Always an integer

- b) Always a rational number
- c) Always an irrational number
- d) Sometimes rational and sometimes irrational

Correct Answer: Option (c)

Explanation:

The product of a rational and an irrational number is always an irrational number.

For example, 2 is a rational number and $\sqrt{3}$ is irrational. Thus, $2\sqrt{3}$ is always an irrational number.

Q.16: What is the value of (256)^{0.16} X (256)^{0.09}?

- a) 4 b) 16 c) 64
- d) 256.25

Correct answer: Option (a)

```
(256)^{0.16} \times (256)^{0.09} = (256)^{(0.16 + 0.09)}
```

- $= (256)^{0.25}$
- = (256)^(25/100)
- $= (256)^{(1/4)}$
- $= (4^4)^{(1/4)}$
- $= 4^{4(1/4)}$
- = 4

Q. 17: Are the square roots of all the positive integers irrational? If not, give an example of the square root of a number that is rational.

Solution: We know that the square root of every positive integer will not yield an integer.

We know that, $\sqrt{4}$ is 2, which is an integer. But $\sqrt{7}$ or $\sqrt{10}$ will give an irrational number. Thus, we can conclude that the square roots of every positive number are not an irrational number.