Chapter 2 - Polynomials

Exercise 2.1 (Multiple choice question)

Question 1: Which one of the following is a polynomial?
(a) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$
(b) $\sqrt{2 x}-1$
(c) $\mathrm{x}^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
(d) $\frac{x-1}{x+1}$

Answer: The correct option is (c).
(a) is not a polynomial, as $\frac{x^{2}}{2}-\frac{2}{x^{2}}=\frac{x^{2}}{2}-2 x^{-2}$, where exponent of x is (-2) which in not a whole number.
(b) is also not a polynomial, as $\sqrt{2 x}-1=\sqrt{2} x^{\frac{1}{2}}-1$ where exponent of x is $\left(-\frac{1}{2}\right)$ which is not a whole number.
(c) is a polynomial as exponents of x is a whole number.
(d) is not a polynomial as $\frac{x-1}{x+1}$ is a rational function.

Question 2: $\sqrt{ } 2$ is a polynomial of degree

(a) 2
(b) 0
(c) 1
(d) ${ }^{1 / 2}$

Answer: (b) $\sqrt{ } 2=-\sqrt{ } 2 x^{\circ}$. Hence, $\sqrt{ } 2$ is a polynomial of degree 0 , because exponent of x is 0 .

Question 3: Degree of the polynomial $4 x^{4}+0 x^{3}+0 x^{5}+5 x+7$ is
(a) 4
(b) 5
(c) 3
(d) 7

Answer: (a) Degree of $4 x^{4}+0 x^{3}+0 x^{5}+5 x+7$ is equal to the highest power of variable x. Here, the highest power of x is 4 , Hence, the degree of a polynomial is 4 .

Question 4: Degree of the zero polynomial is

(a) 0
(b) 1
(c) any natural number
(d) not defined

Answer: (d) The degree of zero polynomial is not defined, because in zero polynomial, the coefficient of any variable is zero i.e., $0 x^{2}$ or $0 x^{5}$,etc.
Hence, we cannot exactly determine the degree of variable.

Question 5: If $p(x)=x 2-2 \sqrt{ } 2 x+1$, then $p(2 \sqrt{ } 2)$ is equal to
(a) 0
(b) 1
(c) $4 \sqrt{ } 2$
(d) $8 \sqrt{ } 2+1$

Answer: (b) Given, $p(x)=x^{2}-2 \sqrt{ } 2 x+1$
On putting $x=2 \sqrt{ } 2$ in Eq. (1), we get,
$P(2 \sqrt{ } 2)=(2 \sqrt{ } 2)^{2}-(2 \sqrt{ } 2)(2 \sqrt{ } 2)+1=8-8+1=1$

Question 6: The value of the polynomial $5 x-4 x^{2}+3$, when $x=-1$ is
(a)-6
(b) 6
(c) 2
(d) -2

Answer: (a) Let $p(x)=5 x-4 x^{2}+3$
On putting $x=-1$ in Eq. (1), we get
$p(-1)=5(-1)-4(-1)^{2}+3=-5-4+3=-6$

Question 7: If $p(x)=x+3$, then $p(x)+p(-x)$ is equal to
(a) 3
(b) $2 x$
(c) 0
(d) 6

Answer: (d) Given $p(x)=x+3$, put $x=(-x)$ in the given equation, we get $p(-x)=-x+3$
Now, $p(x)+p(-x)=x+3+(-x)+3=6$
Question 8: Zero of the zero polynomial is
(a) 0
(b) 1
(c) any real number
(d) not defined

Answer: (c) Zero of the zero polynomial is any real number.
e.g., Let us consider zero polynomial be $0(x-k)$, where k is a real number For determining the zero, put $(x-k)=0$ we get, $x=k$
Hence, zero of the zero polynomial be any real number.

Question 9: Zero of the polynomial $p(x)=2 x+5$ is
(a) $-2 / 5$
(b) $-5 / 2$
(c) $2 / 5$
(d) $5 / 2$

Answer: (b) Given, $p(x)=2 x+5$
For zero of the polynomial, put $p(x)=0$
$\therefore 2 x+5=0$
or, $-5 / 2$
Hence, zero of the polynomial $p(x)$ is $-5 / 2$.

Question 10: One of the zeroes of the polynomial $2 x^{2}+7 x-4$ is
(a) 2
(b) ${ }^{1 / 2}$
(c)-1
(d)-2

Thinking Process
(i) Firstly, determine the factor by using splitting method.
(ii) Further, put the factors equals to zero, then determine the values of x.

Answer: (b) Let $p(x)=2 x^{2}+7 x-4$
$=2 x^{2}+8 x-x-4$ [by splitting middle term]
$=2 x(x+4)-1(x+4)$
$=(2 x-1)(x+4)$
For zeroes of $p(x)$, put $p(x)=0$
or, $(2 x-1)(x+4)=0$
or, $2 x-1=0$ and $x+4=0$
or, $x=1 / 2$ and $x=(-4)$
Hence, one of the zeroes of the polynomial $p(x)$ is $1 / 2$.

Question 11: If $x^{51}+51$ is divided by $x+1$, then the remainder is
(a) 0
(b) 1
(c) 49
(d) 50

Answer: (d) Let $p(x)=x^{51}+51$
When we divide $p(x)$ by $x+1$, we get the remainder $p(-1)$
On putting $x=-1$ in Eq. (1), we get $p(-1)=(-1)^{51}+51=-1+51=50$
Hence, the remainder is 50 .

Question 12: If $x+1$ is a factor of the polynomial $2 x^{2}+k x$, then the value of k is
(a) -3
(b) 4
(c) 2
(d)-2

Answer: (c) Let $p(x)=2 x^{2}+k x$
Since, $(x+1)$ is a factor of $p(x)$, then
$\mathrm{p}(-1)=0$
$2(-1) 2+k(-1)=0$
or, $2-\mathrm{k}=0$
or, $\mathrm{k}=2$
Hence, the value of k is 2 .

Question 13: $x+1$ is a factor of the polynomial

(a) $x^{3}+x^{2}-x+1$
(b) $x^{3}+x^{2}+x+1$
(c) $x^{4}+x^{3}+x^{2}+1$
(d) $x^{4}+3 x^{3}+3 x^{2}+x+1$

Answer: (b) Let assume $(x+1)$ is a factor of $x^{3}+x^{2}+x+1$.
So, $x=-1$ is zero of $x^{3}+x^{2}+x+1$
$(-1)^{3}+(-1)^{2}+(-1)+1=0$
or, $-1+1-1+1=0$
or, $0=0$ Hence, our assumption is true.
Question 14: One of the factors of $\left(25 x^{2}-1\right)+(1+5 x)^{2}$ is
(a) $5+x$
(b) $5-x$
(c) $5 x-1$
(d) $10 x$

Answer: (d) Now, $\left(25 x^{2}-1\right)+(1+5 x)^{2}$
$=25 x^{2}-1+1+25 x^{2}+10 x$ [using identity, $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$=50 x^{2}+10 x=10 x(5 x+1)$
Hence, one of the factor of given polynomial is $10 x$.

Question 15: The value of $249^{2}-248^{2}$ is
(a) $\mathbf{1}^{2}$
(b) 477
(c) 487
(d) 497

Answer: (d) Now, $249^{2}-248^{2}=(249+248)(249-248)$ [using identity, $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}-$ b) $(a+b)$]
$=497 \times 1=497$.

Question 16: The factorization of $4 x^{2}+8 x+3$ is
(a) $(x+1)(x+3)$
(b) $(2 x+1)(2 x+3)$
(c) $(2 x+2)(2 x+5)$
(d) $(2 x-1)(2 x-3)$

Answer: (b) Now, $4 x^{2}+8 x+3=4 x^{2}+6 x+2 x+3$ [by splitting middle term] $=2 x(2 x+3)+1(2 x+3)$
$=(2 x+3)(2 x+1)$
Question 17: Which of the following is a factor of $(x+y)^{3}-\left(x^{3}+y^{3}\right)$?
(a) $x^{2}+y^{2}+2 x y$
(b) $x^{2}+y^{2}-x y$
(c) $x y^{2}$
(d) $3 x y$

Answer: (d) Now, $(x+y) 3-\left(x^{3}+y^{3}\right)=(x+y)-(x+y)\left(x^{2}-x y+y^{2}\right)$
[using identity, $\left.a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right]=(x+y)\left[(x+y)^{2}-\left(x^{2}-x y+y^{2}\right)\right]$
$=(x+y)\left(x^{2}+y^{2}+2 x y-x^{2}+x y-y^{2}\right)$
[using identity, $\left.(a+b)^{2}=a^{2}+b^{2}+2 a b\right)$]
$=(x+y)(3 x y)$
Hence, one of the factor of given polynomial is $3 x y$.
Question 18: The coefficient of x in the expansion of $(x+3)^{3}$ is
(a) 1
(b) 9
(c) 18
(d) 27

Answer: (d) Now, $(x+3)^{3}=x^{3}+3^{3}+3 x(3)(x+3)$
[using identity, $(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$]
$=x^{3}+27+9 x(x+3)$
$=x^{3}+27+9 x^{2}+27 x$ Hence, the coefficient of x in $(x+3)^{3}$ is 27 .

Question 19: If $\frac{x}{y}+\frac{y}{x}=-1$ (where $x, y \neq 0$) then the value of $x^{3}-y^{3}$ is,
(a) 1
(b) -1
(c) 0
(d) $\frac{1}{2}$

Answer: (c) Given, $\frac{x}{y}+\frac{y}{x}=-1$
or, $\frac{x^{2}+y^{2}}{x y}=-1$
Or, $x^{2}+y^{2}=-x y$
or, $x^{2}+y^{2}+x y=0$
Now, $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)=(x-y) \times 0=0$
Question 20: If $49 x^{2}-b=\left(7 x+\frac{1}{2}\right)\left(7 x-\frac{1}{2}\right)$, then the value of b is,
(a) 0
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{1}{4}$
(d) $\frac{1}{2}$

Answer: Given, $49 \mathrm{x}^{2}-\mathrm{b}=\left(7 x+\frac{1}{2}\right)\left(7 x-\frac{1}{2}\right)$
Or, $\left[49 x^{2}-(\sqrt{b})^{2}\right]=\left[(7 x)^{2}-\left(\frac{1}{2}\right)^{2}\right]$
Or, $49 \mathrm{x}^{2}-(\sqrt{b})^{2}=49 \mathrm{x}^{2}-\left(\frac{1}{2}\right)^{2}$

Or, $(\sqrt{b})^{2}=\left(\frac{1}{2}\right)^{2}$

Or, $\mathrm{b}=\frac{1}{4}$

Question 21: If $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$, then $\mathbf{a}^{3}+\mathbf{b}^{3}+\mathrm{c}^{\mathbf{3}}$ is equal to
(a) 0
(b) abc
(c) 3abc
(d) 2abc

Answer: (d) Now, $a^{3}+b^{3}+c^{3}=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b e-c a\right)+3 a b c$ [using identity, $\left.a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b e-c a\right)\right]=0+3 a b c$ $[\because a+b+c=0$, given $]$ $a^{3}+b^{3}+c^{3}=3 a b c$

Exercise 2.2 (Short answer type question)

Question 1: Which of the following expressions are polynomials? Justify your answer,
(i) 8
(ii) $\sqrt{3} x^{2}-2 x$
(iii) $1-\sqrt{5} x$
(iv) $\frac{1}{5 x^{-2}}+5 x+7$
(v) $\frac{(x-2)(x-4)}{x}$
(vi) $\frac{1}{x+1}$
(vii) $\frac{1}{7} a^{3}-\frac{2}{\sqrt{3}} a^{2}+4 a-7$
(viii) $\frac{1}{2 x}$

Answer: (i) Polynomial, because the exponent of the variable of 8 or $8 x^{0}$ is 0 which is a whole number.
(ii)Polynomial because the exponent of the variable of $\sqrt{3} x^{2}-2 x$ is a whole number
(iii) Not polynomial, because the exponent of the variable of $1-\sqrt{5} x$ or $1-\sqrt{5} x^{\frac{1}{2}}$ is $\frac{1}{2}$ which is not a whole number
(iv) polynomial because the exponent of the variable of $\frac{1}{5 x^{2}}+5 x+7=\frac{1}{5} x^{2}+5 x+7$, is a whole number.
(v) Not polynomial
(vi)Not polynomial
(vii)Polynomial
(viii) not polynomial

Question 2: Write whether the following statements are true or false. Justify your answer.
(i) A Binomial can have atmost two terms.
(ii) Every polynomial is a Binomial.
(iii) A binomial may have degree 5 .
(iv) Zero of a polynomial is always 0 .
(v) A polynomial cannot have more than one zero.
(vi) The degree of the sum of two polynomials each of degree 5 is always 5 .

Answer: (i) False, because a binomial has exactly two terms.
(ii) False, because every polynomial is not a binomial .
e.g., (a) $3 x^{2}+4 x+5$ [polynomial but not a binomial]
(b) $3 x^{2}+5$ [polynomial and also a binomial]
(iii) True, because a binomial is a polynomial whose degree is a whole number greater than equal to one. So, it may have degree 5.
(iv) False, because zero of a polynomial can be any real number e.g., $p(x)=x-2$, then 2 is a zero of polynomial $p(x)$.
(v) False, because a polynomial can have any number of zeroes. It depends upon the degree of the polynomial
e.g., $p(x)=x^{2}-2$, as degree $p f(x)$ is 2 ,so it has two degree, so it has two zeroes i.e., $\sqrt{ } 2$ and $-\sqrt{ } 2$.
(vi) False, because the sum of any two polynomials of same degree is not always same degree.
e.g., Let $f(x)=x^{4}+2$ and $g(x)=-x^{4}+4 x^{3}+2 x$
\therefore Sum of two polynomials,
$f(x)+g(x)=x^{4}+2+\left(-x^{4}+4 x^{3}+2 x\right)$
$=4 x^{3}+2 x+2$ which is not a polynomial of degree 4 .

Exercise 2.3(Short answer type question)

Question 1: Classify the following polynomials as polynomials in one variable, two variables etc.
(i) $x^{2}+x+1$
(ii) $y^{3}-5 y$
(iii) $x y+y z+z x$
(iv) $\mathrm{x}^{2}-\mathrm{Zxy}+\mathrm{y}^{2}+1$

Answer: (i) Polynomial $x^{2}+x+1$ is a one variable polynomial, because it contains only one variable i.e., x.
(ii) Polynomial $\mathrm{y}^{3}-5 y$ is a one variable polynomial, because it contains only one variable i.e., y.
(iii) Polynomial $x y+y z+z x$ is a three variables polynomial, because it contains three variables x, y and z .
(iv) Polynomial $x^{2}-Z x y+y^{2}+1$ is a two variables pplynomial, because it contains two variables x and y.

Question 2: Determine the degree of each of the following polynomials.
(i) $2 x-1$
(ii) -10
(iii) $x^{3}-9 x+3 x^{5}$
(iv) $\mathrm{y}^{3}\left(1-\mathrm{y}^{4}\right)$

Answer: (i) Degree of polynomial $2 x-1$ is one, Decause the maximum exponent of x is one.
(ii) Degree of polynomial -10 or $-10 x^{\circ}$ is zero, because the exponent of x is zero.
(iii) Degree of polynomial $x 3-9 x+3 x s$ is five, because the maximum exponent of x is five.
(iv) Degree of polynomial $y^{3}\left(1-y^{4}\right)$ or $y^{3}-y^{7}$ is seven, because the maximum exponent of y is seven.

Question 3: For the polynomial $\frac{x^{2}+2 x+1}{5}-\frac{7}{2} x^{2}-x^{6}$, then write
(i)The degree of the polynomial
(ii) the coefficient of x^{3}
(iii)the coefficient of x^{6}
(iv) the constant term

Answer: Given polynomial $\frac{x^{2}+2 x+1}{5}-\frac{7}{2} x^{2}-x^{6}=\frac{1}{5} x^{3}+\frac{2 x}{5}+\frac{1}{5}-\frac{7}{2} x^{2}-x^{6}$
(i) Degree of the polynomial is the highest power of the variable i.e. 6
(ii) The coefficient of x^{3} in given polynomial is $\frac{1}{5}$
(iii) The coefficient of x^{6} in given polynomial is -1
(iv) The constant term is given polynomial is $\frac{1}{5}$

Question 4: Write the coefficient of x^{2} in each of the following,
(i) $\frac{\pi}{6} x+\mathrm{x}^{2}-1$
(ii) $3 x-5$
(iii) $(x-1)(3 x-4)$
(iv) $(2 x-5)\left(2 x^{2}-3 x+1\right)$

Answer: (i) the coefficient of x^{2} in $\frac{\pi}{6} x+x^{2}-1$ is 1
(ii) The coefficient of x^{2} in $3 x-5=0$
(iii) Let $\mathrm{p}(\mathrm{x})=(\mathrm{x}-1)(3 \mathrm{x}-4)$
$=3 \mathrm{x}^{2}-7 \mathrm{x}+4$
$=3 x^{2}-4 x-3 x+4$
Hence, the coefficient of x^{2} in $p(x)$ is 3
(iv) Let $\mathrm{p}(\mathrm{x})=(2 \mathrm{x}-5)\left(2 \mathrm{x}^{2}-3 \mathrm{x}+1\right)$
$=2 x\left(2 x^{2}-3 x+1\right)-5\left(2 x^{2}-3 x+1\right)$
$=4 x^{3}-6 x^{2}+2 x-10 x^{2}+15 x-5$
$=4 x^{3}-16 x^{2}+17 x-5$
Hence, the coefficient of x^{2} in $p(x)$ is -16

Question 15: Classify the following as a constant, linear, quadratic and cubic polynomials,
(i) $2-x^{2}+x^{3}$
(ii) $3 \mathrm{x}^{3}$
(iii) $5 \mathrm{t}-\sqrt{7}$
(iv) $4-5 y^{2}$
(v) 3
(vi) $2+x$
(vii) $\mathrm{y}^{3}-\mathrm{y}$
(viii) $1+x+x^{2}$
(ix) ${ }^{2}$
(x) $\sqrt{2} x-1$

Answer: (i) Polynomial $2-x^{2}+x^{3}$ is a cubic polynomial, because maximum exponent of x is 3 .
(ii) Polynomial $3 x^{3}$ is a cublic polynomial, because maximum exponent of x is 3 .
(iii) Polynomial $5 t-\sqrt{7}$ is a linear polynomial, because maximum exponent of t is 1 .
(iv) Polynomial $4-5 y^{2}$ is a quadratic polynomial, because maximum exponent of y is 2.
(v) Polynomial 3 is a constant polynomial, because the exponent of variable is 0 .'
(vi) Polynomial $2+x$ is a linear polynomial, because maximum exponent of x is 1 .
(vii) Polynomial $\mathrm{y}^{3}-\mathrm{y}$ is a cubic polynomial, because maximum exponent of y is 3 .
(viii) Polynomial $1+x+x^{2}$ is a quadratic polynomial, because maximum exponent of x is 2 .
(ix) Polynomial t^{2} is a quadratic polynomial, because maximum exponent of t is 2 .
(x) Polynomial $\sqrt{ } 2 x-1$ is a linear polynomial, because maximum exponent of is 1 .

Question 6: Give an example of a polynomial, which is
(i) monomial of degree 1.
(ii) -binomial of degree 20.
(iii) trinomial of degree 2.

Answer: (i) The example of monomial of degree 1 is $5 y$ or $10 x$.
(ii) The example of binomial of degree 20 is $6 x^{20}+x^{11}$ or $x^{20}+1$
(iii) The example of trinomial of degree 2 is $x^{2}-5 x+4$ or $2 x^{2}-x-1$

Question 7: Find the value of the polynomial $3 x^{3}-4 x^{2}+7 x-5$, when $x=3$ and

 also when $x=-3$.Answer: Let $p(x)=3 x^{3}-4 x^{2}+7 x-5$
At $x=3, p(3)=3(3)^{3}-4(3)^{2}+7(3)-5$
$=3 \times 27-4 \times 9+21-5=81-36+21-5 \mathrm{P}(3)=61$
At $x=-3, p(-3)=3(-3)^{3}-4(-3)^{2}+7(-3)-5$
$=3(-27)-4 \times 9-21-5=-81-36-21-5=-143 p(-3)=-143$
Hence, the value of the given polynomial at $x=3$ and $x=-3$ are 61 and -143 , respectively.

Question 8: If $p(x)=x^{2}-4 x+3$, then evaluate $p(2)-p(-1)+p(1 / 2)$.

Answer: Given, $p(x)=x^{2}-4 x+3$
Now, $p(2)=2^{2}-4 \times 2+3=4-8+3=-1$
$p(-1)=(-1)^{2}-4(-1)+3=1+4+3=8$
and $p\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-4 \times \frac{1}{2}+3$
$=\frac{1}{4}-2+3$
$=\frac{1-8+12}{4}$
$=\frac{5}{4}$
Therefore, $p(2)-p(-1)+p\left(\frac{1}{2}\right)=-1-8+\frac{5}{4}=-9+\frac{5}{4}=\frac{-36+5}{4}=\frac{-31}{4}$
Question 9: Find $p(0), p(1)$ and $p(-2)$ for the following polynomials
(i) $p(x)=10 x-4 x^{2}-3$ (ii) $p(y)=(y+2)(y-2)$

Answer: (i) Given, polynomial is
$p(x)=10 x-4 x^{2}-3$
On putting $x=0,1$ and -2 , respectively in Eq. (i), we get $p(0)=10(0)-4(0)^{2}-3=0-0-3=-3$
$p(1)=10(1)-4(1)^{2}-3$
$=10-4-3=10-7=3$
and $\mathrm{p}(-2)=10(-2)-4(-2)^{2}-3$
$=-20-4 \times 4-3=-20-16-3=-39$
Hence, the values of $p(0), p(1)$ and $p(-2)$ are respectively, $-3,3$ and -39 .
(ii) Given, polynomial is $p(y)=(y+2)(y-2)$

On putting $y=0,1$ and -2 , respectively in Eq. (i), we get $p(0)=(0+2)(0-2)=-4$
$p(1)=(1+2)(1-2)=3 \times(-1)=-3$
and $p(-2)=(-2+2)(-2-2)=0(-4)=0$
Hence, the values of $p(0), p(1)$ and $p(-2)$ are respectively, $-4,-3$ and 0 .

Question 10: Verify whether the following are true or false.
(i) -3 is a zero of at -3
(ii) $-1 / 3$ is a zero of $3 x+1$
(iii) $-4 / 5$ is a zero of $4-5 y$
(iv) 0 and 2 are the zeroes of $t^{2}-2 t$
(v) -3 is a zero of $y^{2}+y-6$

Answer: (i) False as zero of $x-3$ is 3
(ii)true as zero of $3 x+1$ is $-\frac{1}{3}$
(iii)False as zero of $4-5 y$ is $\frac{4}{5}$
(iv)true as zeroes of $\mathrm{t}^{2}-2 \mathrm{t}$ are 0 and 2
(v)true.

Now, $\mathrm{y}^{2}+\mathrm{y}-6$
$=y^{2}+3 y-2 y-6$
$=y(y+3)-2(y+3)$
$=(y-2)(y+3)$
Hence, the zeroes of $y^{2}+y-6$ are 2 and -3 .

Question 11:

Find the zeroes of the polynomial in each of the following,
(i) $p(x)=x-4$
(ii) $g(x)=3-6 x$
(iii) $q(x)=2 x-7$
(iv) $h(y)=2 y$

Answer:

(i) Given, polynomial is
$p(x)=x-4$
For zero of polynomial, put $p(x)=x-4=0$
or, $x=4$
Hence, zero of polynomial is 4 .
(ii) Given, polynomial is
$g(x)=3-6 x$
For zero of polynomial, put $\mathrm{g}(\mathrm{x})=0$
$3-6 x=0$
or, $6 x=3$
or, $x=\frac{1}{2}$.
Hence, zero of polynomial is X
(iii) Given, polynomial is $q(x)=2 x-7$ For zero of polynomial, put $q(x)=2 x-7=0$
$2 x=7$
or, $x=\frac{7}{2}$
Hence, zero of polynomial is
(iv) Given polynomial $\mathrm{h}(\mathrm{y})=2 \mathrm{y}$ For zero of polynomial, put $\mathrm{h}(\mathrm{y})=0$
$2 \mathrm{y}=0$
Hence, the zero of polynomial is 0 .

Question 12:

Find the zeroes of the polynomial $p(x)=(x-2)^{2}-(x+2)^{2}$.

Answer:

Given, polynomial is $p(x)=(x-2)^{2}-(x+2)^{2}$
For zeroes of polynomial, put $p(x)=0$
$(x-2)^{2}-(x+2)^{2}=0$
$(x-2+x+2)(x-2-x-2)=0 \quad$ [using identity, $\left.a^{2}-b^{2}=(a-b)(a+b)\right]$
or,(2x)(-4) =0
or, $x=0$.

Question 13:

By actual division, find the quotient and the remainder when the first polynomial is divided by the second polynomial $x^{4}+1$ and $x-1$.

Answer:

Using long division method,

$$
\begin{gathered}
x-1) x^{4}+1\left(x^{3}+x^{2}+x+1\right. \\
\frac{x^{4}-x^{3}}{x^{3}+1} \\
\frac{x^{3}-x^{2}}{x^{2}+1} \\
\frac{x^{2}-x}{x+1} \\
\frac{x-1}{2}
\end{gathered}
$$

Hence, Quotient $=x^{3}+x^{2}+x+1$ and Remainder $=2$

Question 14:

By remainder theorem, find the remainder when $p(x)$ is divided by $g(x)$
(i) $p(x)=x^{3}-2 x^{2}-4 x-1, g(x)=x+1$
(ii) $p(x)=x^{3}-3 x^{2}+4 x+50, g(x)=x-3$
(iii) $p(x)=x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1-1$
(iv) $p(x)=x^{3}-6 x^{2}+2 x-4, g(x)=1-(3 / 2) x$

Answer:

(i)Given $\mathrm{p}(\mathrm{x})=x^{3}-2 x^{2}-4 x-1$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}+1$

Here, zero of $g(x)$ is -1 .
When we divide $p(x)$ by $g(x)$ by remainder theorem, we get the remainder $p(-1)$.
Therefore, $\mathrm{p}(-1)=(-1)^{3}-2(-1)^{2}-4(-1)-1$

$$
\begin{aligned}
& =-1-2+4-1 \\
& =4-4=0
\end{aligned}
$$

Hence, remainder is 0 .
(ii) Given, $\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}+4 x+50$ and $\mathrm{g}(\mathrm{x} 0=\mathrm{x}-3$

Hence, zero of $g(x)$ is 3 .
When we divide $p(x)$ by $g(x)$ by remainder theorem, we get the remainder $p(3)$.
Therefore, $p(3)=(3)^{3}-3(3)^{2}+4(3)+50$

$$
=27-27+12+50=62
$$

Hence, remainder is 62.
(iii) Given, $\mathrm{p}(\mathrm{x})=x^{3}-3 x^{2}+4 x+50$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-1$

Hence, Zero of $g(x)=\frac{1}{2}$
When we divide $p(x)$ by $g(x)$ using remainder theorem, we get the remainder $p\left(\frac{1}{2}\right)$
Therefore, $\mathrm{p}\left(\frac{1}{2}\right)=4\left(\frac{1}{2}\right)^{3}-12\left(\frac{1}{2}\right)^{2}+14\left(\frac{1}{2}\right)-3$

$$
\begin{aligned}
& =4 \times \frac{1}{8}-12 \times \frac{1}{4}+14 \times \frac{1}{2}-3 \\
& =\frac{1+2}{2}=\frac{3}{2}
\end{aligned}
$$

Hence, remainder is $\frac{3}{2}$
(iv) Given, $p(x)=x^{3}-6 x^{2}+2 x-4$ and $g(x)=1-\frac{3}{2} x$

Here, zero of $g(x)=\frac{2}{3}$
When we divide $p(x)$ by $g(x)$ using remainder theorem, we get the remainder $p\left(\frac{2}{3}\right)$
Hence, $\frac{8}{27}-6 \times \frac{4}{9}+2 \times \frac{2}{3}-4=\frac{8}{27}-\frac{24}{9}+\frac{4}{3}-4=\frac{8-72+36-108}{27}=\frac{-136}{27}$
Thus, remainder is $\frac{-136}{27}$.

Question 15: Check whether $p(x)$ is a multiple of $g(x)$ or not

(i) $p(x)=x-5 x+4 x-3, g(x)=x-2$.
(ii) $p(x)=2 x-11 x-4 x+5, g(x)=2 x+1$

Answer: (i) $g(x)=x-2$
Then zero of the $g(x)$ is 2 . [Given]
[Since, $p(x)=x^{3}-5 x^{2}+4 x-3$]
Now, $p(2)=2^{3}-5(2)^{3}+4(2)-3=8-20+8-3=-7 \neq 0$
Since, remainder $\neq 0$, so $p(x)$ is not a multiple of $g(x)$.
(ii) Here $g(x)=2 x+1$

Then, zero of $g(x)=-\frac{1}{2}$
Now, $p\left(\frac{-1}{2}\right)=2\left(\frac{-1}{2}\right)^{3}-11\left(-\frac{1}{2}\right)^{2}-4\left(-\frac{1}{2}\right)+5$
$=2\left(\frac{-1}{8}\right)-11\left(\frac{1}{4}\right)+2+5$
$=\frac{-1}{4}-\frac{11}{4}+7$
$=\frac{-1-11+28}{4}=\frac{16}{4}=4$
Since, remainder $\neq 0$, so $p(x)$ is not a multiple of $g(x)$.

Question 16: Show that,

(i) $x+3$ is a factor of $69+11 c-x+x$
(ii) $2 x-3$ is a factor of $x+2 x-9 x+12$

Answer: (i) Let $p(x)=x^{3}-x^{2}+11 x+69$
We have to show that, $x+3$ is a factor of $p(x)$ i.e., $p(-3)=0$
Now, $p(-3)=(-3)^{3}-(-3)^{2}+11(-3)+69=-27-9-33+69=-69+69=0$
hence, $(x+3)$ is a factor of $p(x)$
(ii) let $p(x)=2 x^{3}-9 x^{2}+x+12$

We have to show that, $2 x-3$ is a factor of $p(x)$.
i.e., $p\left(\frac{3}{2}\right)=0$

Now, $p\left(\frac{3}{2}\right)=2\left(\frac{3}{2}\right)^{3}-9\left(\frac{3}{2}\right)^{2}+\frac{3}{2}+12$

$$
\begin{aligned}
& =2 \times \frac{27}{8}-9 \times \frac{9}{4}+\frac{3}{2}+12 \\
& =\frac{27-81+6+48}{4}=\frac{81-81}{4}=0
\end{aligned}
$$

hence, $(2 x-3)$ is a factor of $p(x)$.

Question 17: Determine which of the following polynomial has $\mathbf{x - 2}$ a factor (i) $3 x+6 x-24$ (ii) $4 x+x-2$

Answer: let $p(x)=x^{5}-4 a^{2} x^{3}+2 x+2 a+3$
Since, $x+2 a$ is a factor of $p(x)$, then put $p(-2 a)=0$
Therefore, $(-2 a)^{5}-4 a^{2}(-2 a)^{3}+2(-2 a)+2 a+3=0$
or, $-32 a^{5}+32 a^{5}-4 a+2 a+3=0$
or, $-2 a+3=0$
or, $2 \mathrm{a}=3$
or, $\mathrm{a}=\frac{3}{2}$
Hence, the value of a is $\frac{3}{2}$

Question 18: Show that $\mathrm{p}-1$ is a factor of $\mathrm{p}-1$ and also of $\mathrm{p}-1$.

Answer: Let $\mathrm{g}(\mathrm{p})=\mathrm{p}-1$ and $\mathrm{h}(\mathrm{p})=\mathrm{p}-1$.
On putting $p=1$ in Eq. (i), we get $g(1)=1-1=1-1=0$ Hence, $p-1$ is a factor of $g(p)$.
Again, putting $p=1$ in Eq. (ii), we get,
$h(1)=(1)-1=1-1=0$ Hence, $p-1$ is a factor of $h(p)$.

Question 19: For what value of m is $x-2 m x+16$ divisible by $x+2$?
Answer: Let $\mathrm{p}(\mathrm{x})=\mathrm{x}-2 \mathrm{mx}+16$
Since, $p(x)$ is divisible by $(x+2)$, then remainder $=0$
$\mathrm{P}(-2)=0$
or, $(-2)-2 m(-2)+16=0$
or, $-8-8 m+16=0$
or, $8=8 \mathrm{~m}$
or, $m=1$
Hence, the value of m is 1 .

Question 20: If $x+2 a$ is a factor of $a-4 a x+2 x+2 a+3$, then find the value of a.
Answer: Let $p(x)=a-4 a x+2 x+2 a+3$
Since, $x+2 a$ is a factor of $p(x)$, then put
$p(-2 a)=0(-2 a)-4 a(-2 a)+2(-2 a)+2 a+3=0$
or, $-32 a+32 a-4 a+2 a+3=0$
or, $-2 \mathrm{a}+3=0$
or, $2 \mathrm{a}=3$
or, $a=3 / 2$.
Hence, the value of a is $3 / 2$.

Question 21: Find the value of m, so that $2 x-1$ be a factor of $8 x+4 x-16 x+10 x+07$.

Answer: Let $p(x)=8 x^{4}+4 x^{3}-16 x^{2}+10 x+m$
Since, $2 x-1$ is a factor of $p(x)$, then put $p\left(\frac{1}{2}\right)=0$
Therefore, $8\left(\frac{1}{2}\right)^{4}+4\left(\frac{1}{2}\right)^{3}-16\left(\frac{1}{2}\right)^{2}+10\left(\frac{1}{2}\right)+m=0$
Or, $8 \times \frac{1}{16}+4 \times \frac{1}{8}-16 \times \frac{1}{4}+10\left(\frac{1}{2}\right)+m=0$
or, $\frac{1}{2}+\frac{1}{2}-4+5+m=0$
or, $1+1+m=0$
or, $m=-2$
Hence, the value of the m is -2 .

Question 22: If $x+1$ is a factor of $a x+x-2 x+4 a-9$, then find the value of a.
Answer: Let $p(x)=a x^{3}+x^{2}-2 x+4 a-9$
Since, $x+1$ is a factor of $p(x)$, then put $p(-1)=0$
Therefore, $a(-1)^{3}+(-1)^{2}-2(-1)+4 a-9=0$
or, $-a+1+2+4 a-9=0$
or, $3 a-6=0$
or, $3 \mathrm{a}=6$
or, $a=\frac{6}{3}=2$

Question 23: Factorise

(i) $x^{2}+9 x+18$
(ii) $6 x^{2}+7 x-3$
(iii) $2 x^{2}-7 x-15$
(iv) $84-2 r-2 r^{2}$

Answer: (i) $x^{2}+9 x+18$
$=x^{2}+6 x+3 x+18$
$=x(x+6)+3(x+6)$
$=(x+3)(x+6)$
(ii) $6 x^{2}+7 x-3$
$=6 x^{2}+9 x-2 x-3$
$=3 x(2 x+3)-1(2 x+3)$
$=(3 x-1)(2 x+3)$
(iii) $2 x^{2}-7 x-15$
$=2 x^{2}-10 x+3 x-15$
$=2 x(x-5)+3(x-5)$
$=(2 x+3)(x-5)$
(iv) $84-2 r-2 r^{2}$
$=-2\left(r^{2}+r-42\right)$
$=-2\left(r^{2}+7 r-6 r-42\right)$
$=-2[r(r+7)-6(r+7)]$
$=-2(r-6)(r+7)$
$=2(6-r)(r+7)$

Question 24: Factorise

(i) $2 x^{3}-3 x^{2}-17 x+30$
(ii) $x^{3}-6 x^{2}+11 x-6$
(iii) $x^{3}+x^{2}-4 x-4$
(iv) $3 x^{3}-x^{2}-3 x+1$

Answer: (i) Let $p(x)=2 x^{3}-3 x^{2}-17 x+30$
Constant term $\mathrm{p}(\mathrm{x})=30$
Therefore, factors of 30 are $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 10, \pm 15, \pm 30$
By trial, we find that $p(2)=0$
so, $(x-2)$ is a factor of $p(x)$.
Now, we see that $2 x^{3}-3 x^{2}-17 x+30$

$$
\begin{aligned}
& =2 x^{2}-4 x^{2}+x^{2}-2 x-15 x+30 \\
& =2 x^{2}(x-2)+x(x-2)-15(x-2) \\
& =(x-2)\left(2 x^{2}+x-15\right)
\end{aligned}
$$

Now, $\left(2 x^{2}+x-15\right)$ can be factorised either by splitting the middle term or by using the factor theorem.
Now, $\left(2 x^{2}+x-15\right)=2 x^{2}+6 x-5 x-15$

$$
\begin{aligned}
& =2 x(x+3)-5(x+3) \\
& =(x+3)(2 x-5)
\end{aligned}
$$

Therefore, $2 x^{3}-3 x^{2}-17 x+30=(x-2)(x+3)(2 x-5)$
(ii) Let $\mathrm{p}(\mathrm{x})=\mathrm{x}^{3}-6 \mathrm{x}^{2}+11 \mathrm{x}-6$

Constant term pf $p(x)=-6$
factors of -6 are $\pm 1, \pm 2, \pm 3, \pm 6$
By trial, we find that $p(1)=0$, so $(x-1)$ is a factor of $p(x)$.
Now, we see that,

$$
x^{3}-6 x^{2}+11 x-6
$$

$=x^{3}-x^{2}-5 x^{2}+5 x+6 x-6$
$=x^{2}(x-1)-5 x(x-1)+6(x-1)$
$=(x-1)\left(x^{2}-5 x+6\right)$

Now, $\left(x^{2}-5 x+6\right)$
$=x^{2}-3 x-2 x+6$
$=x(x-3)-2(x-3)$
$=(x-3)(x-2)$

Therefore, $x^{3}-6 x^{2}+11 x-6=(x-1)(x-2)(x-3)$
(iii) $x^{3}+x^{2}-4 x-4=(x+1)(x-2)(x+2)$
(iv) $3 x^{3}-x^{2}-3 x+1=(x-1)(x+1)(3 x-1)$

Question 25: Using suitable identity, evaluate the following

(i) 103^{3}
(ii) 101×102
(iii) 999^{2}

Answer: (i) $103^{3}=(100+3)^{3}$

$$
=100^{3}+3^{3}+3 \times 100 \times 3(100+3)
$$

$$
=1000000+27+900
$$

$$
=1092727
$$

(ii) $101 \times 102=(100+1)(100+2)$

$$
\begin{aligned}
& =100^{2}+100(1+2)+1 \times 2 \\
& =10000+300+2=10302
\end{aligned}
$$

(iii) $999^{2}=(1000-1)^{2} \quad$ [Now proceed by using identity $\left.(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$

Question 26: Factorize the following:
(i) $4 x^{2}+20 x+25$
(ii) $9 y^{2}-66 y z+121 z^{2}$
(iii) $\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$

Answer: (i) proceed by using identity $\mathrm{a}^{2}+2 \mathrm{ab}+\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})^{2}$
(ii) proceed by using identity $\mathrm{a}^{2}-2 a b+b^{2}=(a-b)^{2}$
(iii) $\left(2 x+\frac{1}{3}\right)^{2}-\left(x-\frac{1}{2}\right)^{2}$
$=\left[\left(2 x+\frac{1}{3}\right)-\left(x-\frac{1}{2}\right)\right]\left[\left(2 x+\frac{1}{3}\right)-\left(x-\frac{1}{2}\right)\right]$
$=\left(2 x-x+\frac{1}{3}+\frac{1}{2}\right)\left(2 x+x+\frac{1}{3}-\frac{1}{2}\right)$
$=\left(x+\frac{5}{6}\right)\left(3 x-\frac{1}{6}\right)$

Question 27: Factorize the following:

(i) $9 x^{2}-12 x+3$
(ii) $9 x^{2}-12 x y+4$

Answer: (i) $9 x^{2}-12 x+3$
$=3\left(3 x^{2}-4 x+1\right) \quad[$ Split the middle term]
(ii) $9 x^{2}-12 x y+4$
$=(3 \mathrm{x})^{2}-2 \times 3 x \times 2+2^{2}$
$=(3 x-2)^{2}$
$=(3 x-2)(3 x-2)$

Question 28: Expand the following

(i) $(4 a-b+2 c)^{2}$
(ii) $(3 a-5 b-c)^{2}$
(iii) $(-x+2 y-3 z)^{2}$

Answer: (i) [using identity $(\mathrm{a}+\mathrm{b}+\mathrm{c})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+2 \mathrm{ab}+2 \mathrm{bc}+2 \mathrm{ca}$]
(ii) [using identity $\left.(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\right]$
(iii) [using identity $\left.(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\right]$

Exercise 2.4 (Long Answer type question)

Question 1: If the polynomials $a z^{3}+4 z^{2}+3 z-4$ and $z^{3}-4 z+0$ leave the same remainder when divided by $z-3$, find the value of a.

Answer: Let $p(z)=a z+4 z+3 z-4$ and $p(z)=z-4 z+0$
When we divide $p(z)$ by $z-3$, then we get the remainder $p(3)$.
Now, $p(3)=a(3) 3+4(3) 2+3(3)-4=27 a+36+9-4=27 a+41$ When we divide $p(z)$ by $z-3$ then we get the remainder $p(3)$.

Now, $p(3)=(3)-4(3)+a=27-12+a=15+a$
According to the question, both the remainders are same.
p (3) = p (3)
or, $27 a+41=15+a$
or, $27 \mathrm{a}-\mathrm{a}=15-41$
or, $26 a=26 a=-1$
Question 2: The polynomial $p\{x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ when divided by $x+1$ leaves the remainder 19. Find the values of a. Also, find the remainder when $\mathrm{p}(\mathrm{x})$ is divided by $\mathrm{x}+2$.

Answer: Given, $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$
When we divide $p(x)$ by $x+1$, then we get the remainder $p(-1)$
Now, $p(-1)=(-1)^{4}-2(-1)^{3}+3(-1)^{2}-a(-1)+3(-1)-7$
According, to the question, $\mathrm{p}(-1)=19$
or, $4 \mathrm{a}-1=19$
or, $4 \mathrm{a}=20$
or, $\mathrm{a}=5$
Required polynomial $=x^{4}-2 x^{3}+3 x^{2}-5 x+3(5)-7$

$$
\begin{aligned}
& =x^{4}-2 x^{3}+3 x^{2}-5 x+15-7 \\
& =x^{4}-2 x^{3}+3 x^{2}-5 x+8
\end{aligned}
$$

When we divide $\mathrm{p}(\mathrm{x})$ by $\mathrm{x}+2$, then we get the remainder $\mathrm{p}(-2)$
Now, $p(-2)=(-2)^{4}-2(-2)^{3}+3(-2)-5(-2)+8$

$$
=16+16+12+10+8=62
$$

Hence, the value of a is 5 and remainder is 62 .
Question 3: If both $x-2$ and $x-(1 / 2)$ are factors of $p x+5 x+r$, then show that $p=r$.
Answer: let $f(x)=\mathrm{px}^{2}+5 \mathrm{x}+\mathrm{r}$
Since, $x-2$ is factor of $f(x)$, then $f(2)=0$
therefore, $p(2)^{2}+5(2)+r=0$
or, $4 \mathrm{p}+10+\mathrm{r}=0$
Since, $\mathrm{x}-\frac{1}{2}$ is a factor of $\mathrm{f}(\mathrm{x})$, then $\mathrm{f}\left(\frac{1}{2}\right)=0$
Therefore, $\mathrm{p}\left(\frac{1}{2}\right)^{2}+5\left(\frac{1}{2}\right)+r=0$
or, $p+10+4 r=0$
Since, $x-2$ and $x-\frac{1}{2}$ are factors of $f(x)=p x^{2}+5 x+r$
From eq(1) and (2),
$4 \mathrm{p}+10+\mathrm{r}=\mathrm{p}+10+4 \mathrm{r}$
or, $3 \mathrm{p}=3 \mathrm{r}$
hence, $p=r$

Question 4: Without actual division, prove that $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-$ $3 \mathrm{x}+2$

Answer: Let $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{4}-5 \mathrm{x}^{3}+2 \mathrm{x}^{2}-\mathrm{x}+2$ firstly, factorise $\mathrm{x}^{2}-3 \mathrm{x}+2$
Now, $x^{2}-3 x+2=x-2 x-x+2$ [by splitting middle term]
$=x(x-2)-1(x-2)$
$=(x-1)(x-2)$

Hence, 0 of $x^{2}-3 x+2$ are 1 and 2 .
We have to prove that, $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-3 x+2$ i.e., to prove that, $p(1)=0$ and $p(2)=0$

Now, $p(1)=2(1)^{4}-5(1)^{3}+2(1)^{2}-1+2=2-5+2-1+2=6-6=0$ and $p(2)=2(2)^{4}-5(2)^{3}+2(2)^{2}-2+2=32-40+8=40-40=0$

Hence, $\mathrm{p}(\mathrm{x})$ is divisible by $\mathrm{x}^{2}-3 \mathrm{x}+2$.
Question 5: Simplify $(2 x-5 y)^{3}-(2 x+5 y)^{3}$.
Answer: $(2 x-5 y)^{3}-(2 x+5 y)^{3}$
$=\left[(2 \mathrm{x})^{3}-(5 \mathrm{y})^{3}-3(2 \mathrm{x})(5 \mathrm{y})(2 \mathrm{x}-5 \mathrm{y})\right]-\left[(2 \mathrm{x})^{3}+(5 \mathrm{y})^{3}+3(2 \mathrm{x})(5 \mathrm{y})(2 \mathrm{x}+5 \mathrm{y})\right]$
[using identity, $(a-b)=a-b-3 a b$ and $(a+b)=a+b+3 a b]$
$(2 x)^{3}-(5 y)^{3}-30 x y(2 x-5 y)-(2 x)^{3}-(5 y)^{3}-30 x y(2 x+5 y)$
$=-2(5 y)^{3}-30 x y(2 x-5 y+2 x+5 y)$
$=-2 \times 125 y^{3}-30 x y(4 x)$
$=-250 y^{3}-120 x^{2} y$

