Chapter 4: Linear equations in two variables

Q.1: Express the following linear equations in the form axe $+\mathrm{by}+\mathrm{c}=0$ and indicate the values of a, b and c in each case:
(i) $x-y / 5-10=0$
(ii) $-2 x+3 y=6$
(iii) $\mathbf{y}-\mathbf{2}=\mathbf{0}$

Solution: (i) The equation $x-y / 5-10=0$ can be written as:
$(1) x+(-1 / 5) y+(-10)=0$
Now compare the above equation with $a x+b y+c=0$
Thus, we get; $a=1, b=-1 / 5, c=-10$
(ii) $-2 x+3 y=6$

Re-arranging the given equation, we get, $-2 x+3 y-6=0$
The equation $-2 x+3 y-6=0$ can be written as, $(-2) x+3 y+(-6)=0$
Now comparing $(-2) x+3 y+(-6)=0$ with $a x+b y+c=0$
We get, $a=-2, b=3, c=-6$
(iii) $y-2=0$

The equation $\mathrm{y}-2=0$ can be written as, $0 \mathrm{x}+1 \mathrm{y}+(-2)=0$
Now comparing $0 x+1 y+(-2)=0$ with $a x+b y+c=0$
We get, $a=0, b=1, c=-2$

Q.2. Write four solutions for each of the following equations:

(i) $\mathbf{2 x}+\mathrm{y}=\mathbf{7}$

Solution: To find the four solutions of $2 x+y=7$ we substitute different values for x and y
Let $x=0$ Then,
$2 x+y=7$
$(2 \times 0)+y=7$
$y=7$
$(0,7)$
Let $\mathrm{x}=1$
Then, $2 \mathrm{x}+\mathrm{y}=7$
$(2 \times 1)+y=7$
$2+y=7$
$y=7-2$
$y=5$
$(1,5)$
Let $\mathrm{y}=1$
Then, $2 \mathrm{x}+\mathrm{y}=7$
$2 x+1=7$
$2 x=7-1$
$2 x=6$
$x=3$
$(3,1)$

Let $\mathrm{x}=2$
Then, $2 x+y=7$
$2(2)+y=7$
$4+y=7$
$y=7-4$
$y=3$
$(2,3)$
The solutions are $(0,7),(1,5),(3,1),(2,3)$
(ii) $\pi x+y=9$

To find the four solutions of $\pi x+y=9$ we substitute different values for x and y
Let $\mathrm{x}=0$
Then, $\pi x+y=9$
$(\pi \times 0)+y=9$
$y=9$
$(0,9)$
Let $\mathrm{x}=1$
Then, $\pi x+y=9$
$(\pi \times 1)+y=9$
$\pi+y=9$
$y=9-\pi$
(1,9-m)
Let $\mathrm{y}=0$ Then, $\pi \mathrm{x}+\mathrm{y}=9$
$\pi x+0=9$
$\pi x=9$
$x=9 / \pi$
(9/п,0)
Let $\mathrm{x}=-1$
Then, $\pi x+y=9$
$(\pi(-1))+y=9$
$-\pi+y=9$
$y=9+\pi$
($-1,9+\pi$)
The solutions are (0,9), ($1,9-\pi$),($9 / \pi, 0$),(-1,9+m)
Q.3: Find the value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.

Solution: The given equation is $2 x+3 y=k$
According to the question, $x=2$ and $y=1$.
Now, Substituting the values of x and y in the equation $2 x+3 y=k$,
We get,
$\Rightarrow(2 \times 2)+(3 \times 1)=k$
$\Rightarrow 4+3=\mathrm{k}$
$\Rightarrow 7=\mathrm{k}$
$\Rightarrow k=7$
The value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$, is 7 .
Q.4: Draw the graph of each of the following linear equations in two variables:

(i) $y=3 x$

Solution: To draw a graph of linear equations in two variables, let us find out the points to plot. To find out the points, we have to find the values for which x and y satisfy the given equation.
Here, $y=3 x$
Substituting the values for x,
When $x=0, y=3 x$
$y=3(0) \Rightarrow y=0$
When $\mathrm{x}=1, \mathrm{y}=3 \mathrm{x}$
$y=3(1) \Rightarrow y=3$

x	y
0	0
1	3

The points to be plotted are $(0,0)$ and $(1,3)$

(ii) $3=2 x+y$

Solution: To draw a graph of linear equations in two variables, let us find out the points to plot. To find out the points, we have to find the values for which x and y satisfy the given equation.
Here, $3=2 x+y$
Substituting the values for x , When $\mathrm{x}=0$,
$3=2 \mathrm{x}+\mathrm{y}$
$\Rightarrow 3=2(0)+y$
$\Rightarrow 3=0+y$
$\Rightarrow \mathrm{y}=3$

When $x=1$,
$3=2 x+y$
$\Rightarrow 3=2(1)+y$
$\Rightarrow 3=2+y$
$\Rightarrow y=3-2$
$\Rightarrow y=1$

x	y
0	3
1	1

The points to be plotted are $(0,3)$ and $(1,1)$

Q.5: If the point $(3,4)$ lies on the graph of the equation $3 y=a x e+7$, find the value of a.

Solution: The given equation is $3 y=a x+7$
According to the question, $x=3$ and $y=4$
Now, Substituting the values of x and y in the equation $3 y=a x+7$,
We get, $(3 \times 4)=(a \times 3)+7$
$\Rightarrow 12=3 a+7$
$\Rightarrow 3 \mathrm{a}=12-7$
$\Rightarrow 3 \mathrm{a}=5$
$\Rightarrow a=5 / 3$
The value of a, if the point $(3,4)$ lies on the graph of the equation $3 y=a x e+7$ is $5 / 3$.
Q.6: Show that the points $A(1,2), B(-1,-16)$ and $C(0,-7)$ lie on the graph of the linear equation $y=9 x-7$.

Solution: We have the equation, $y=9 x-7$
For A (1, 2),
Substituting $(x, y)=(1,2)$,
We get, $2=9(1)-7$
$2=9-7$
$2=2$
For $B(-1,-16)$, Substituting $(x, y)=(-1,-16)$,

We get, $-16=9(-1)-7$
$-16=-9-7$
$-16=-16$
For $C(0,-7)$, Substituting $(x, y)=(0,-7)$,
We get, $-7=9(0)-7$
$-7=0-7$
$-7=-7$
Hence, points $A(1,2), B(-1,-16)$ and $C(0,-7)$ satisfy the line $y=9 x-7$.
Thus, $A(1,2), B(-1,-16)$ and $C(0,-7)$ are solutions of the linear equation $y=9 x-7$
Therefore, the points $A(1,2), B(-1,-16), C(0,-7)$ lie on the graph of linear equation $y=9 x-7$.

Q.7: Draw the graph of the linear equation $3 x+4 y=6$. At what points, the graph cuts the X and Y-axis?

Solution: Given equation, $3 x+4 y=6$.
We need at least 2 points on the graph to draw the graph of this equation, Thus, the points the graph cuts:
(i) x-axis

Since the point is on the x-axis, we have $y=0$.
Substituting $y=0$ in the equation, $3 x+4 y=6$,
We get, $3 x+4 \times 0=6$
$\Rightarrow 3 x=6$
$\Rightarrow x=2$
Hence, the point at which the graph cuts x-axis $=(2,0)$.
(ii) y-axis

Since the point is on the y-axis, we have, $x=0$.
Substituting $x=0$ in the equation, $3 x+4 y=6$,
We get, $3 \times 0+4 y=6$
$\Rightarrow 4 y=6$
$\Rightarrow y=6 / 4$
$\Rightarrow y=3 / 2$
$\Rightarrow y=1.5$
Hence, the point at which the graph cuts y-axis $=(0,1.5)$.
Plotting the points $(0,1.5)$ and $(2,0)$ on the graph.

