Chapter 9: Area of triangles and parallelogram

Q.1. In Figure, $A B C D$ is a parallelogram, $A E \perp D C$ and $C F \perp A D$. If $A B=16 \mathrm{~cm}, A E=8 \mathrm{~cm}$ and $C F=10 \mathrm{~cm}$, find $A D$.

Solution:
Given,
$A B=C D=16 \mathrm{~cm}$ (Opposite sides of a $\| g m$ are equal)
$C F=10 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$
Now,
Area of parallelogram $=$ Base \times Altitude
$=C D \times A E=A D \times C F$
$\Rightarrow 16 \times 8=A D \times 10$
$\Rightarrow A D=128 / 10$
$\Rightarrow A D=12.8 \mathrm{~cm}$
Q.2. If E, F, G and H are respectively the mid-points of the sides of a parallelogram $A B C D$, show that ar $(E F G H)=1 / 2 \operatorname{ar}(A B C D)$.
Solution:

Given,
$\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are the mid-points of the sides of a parallelogram ABCD , respectively.
To Prove: $\operatorname{ar}(E F G H)=1 / 2 \operatorname{ar}(A B C D)$
Construction: H and F are joined.
Proof:
$A D \| B C$ and $A D=B C$ (Opposite sides of a \|gm)
$\Rightarrow 1 / 2 A D=1 / 2 B C$
Also,
AH || BF and and DH || CF
$\Rightarrow \mathrm{AH}=\mathrm{BF}$ and $\mathrm{DH}=\mathrm{CF}$ (H and F are midpoints)
Therefore, ABFH and HFCD are parallelograms.
Now,
As we know, \triangle EFH and $\|$ gm ABFH, both lie on the same FH the common base and in-between the same parallel lines $A B$ and $H F$.
\therefore area of EFH $=1 / 2$ area of ABFH - (i)
And,
area of GHF $=1 / 2$ area of HFCD - (ii)
Adding (i) and (ii),
area of $\Delta \mathrm{EFH}+$ area of $\Delta \mathrm{GHF}=1 / 2$ area of ABFH $+1 / 2$ area of HFCD
$\Rightarrow \operatorname{ar}($ EFGH $)=1 / 2 \operatorname{ar}($ ABCD $)$
Q.3. In Figure, P is a point in the interior of a parallelogram $A B C D$. Show that
(i) $\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})=1 / 2 \operatorname{ar}(\mathrm{ABCD})$
(ii) $\operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(P C D)$
[Hint: Through P, draw a line parallel to $A B$.]

Solution:

(i) A line $G H$ is drawn parallel to $A B$ passing through P.

In a parallelogram,
AB \| GH (by construction) - (i)
\therefore,
$A D\|B C \Rightarrow A G\| B H$ - (ii)
From equations (i) and (ii),

ABHG is a parallelogram.
Now,
$\triangle A P B$ and $\| g m$ ABHG are lying on the same base $A B$ and in-between the same parallel lines $A B$ and GH.
$\therefore \operatorname{ar}(\triangle \mathrm{APB})=1 / 2 \operatorname{ar}(\mathrm{ABHG})$ - (iii)
also,
$\triangle \mathrm{PCD}$ and $\|$ gm CDGH are lying on the same base CD and in-between the same parallel lines CD and GH.
$\therefore \operatorname{ar}(\triangle \mathrm{PCD})=1 / 2 \operatorname{ar}(\mathrm{CDGH})$ — (iv)
Adding equations (iii) and (iv),
$\operatorname{ar}(\triangle \mathrm{APB})+\operatorname{ar}(\triangle \mathrm{PCD})=1 / 2\{\operatorname{ar}(\mathrm{ABHG})+\operatorname{ar}(\mathrm{CDGH})\}$
$\Rightarrow \operatorname{ar}(\mathrm{APB})+\operatorname{ar}($ PCD $)=1 / 2 \operatorname{ar}(\mathrm{ABCD})$
(ii) A line $E F$ is drawn parallel to $A D$ passing through P.

In the parallelogram,
AD || EF (by construction) - (i)
$A B\|C D \Rightarrow A E\| D F-$ (ii)
From equations (i) and (ii),
AEDF is a parallelogram.
Now,
$\triangle A P D$ and $\| g m$ AEFD are lying on the same base $A D$ and in-between the same parallel lines $A D$ and $E F$.
$\therefore \operatorname{ar}(\triangle A P D)=1 / 2 \operatorname{ar}($ AEFD $)$ - (iii)
also,
$\triangle P B C$ and $\| g m$ BCFE is lying on the same base $B C$ and in-between the same parallel lines $B C$ and $E F$.
$\therefore \operatorname{ar}(\triangle P B C)=1 / 2 \operatorname{ar}(B C F E)$ - (iv)
Adding equations (iii) and (iv),

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{APD})+\operatorname{ar}(\triangle \mathrm{PBC})=1 / 2\{\operatorname{ar}(\mathrm{AEFD})+\operatorname{ar}(\mathrm{BCFE})\} \\
& \Rightarrow \operatorname{ar}(\mathrm{APD})+\operatorname{ar}(\mathrm{PBC})=\operatorname{ar}(\mathrm{APB})+\operatorname{ar}(\mathrm{PCD})
\end{aligned}
$$

Q.4. In a triangle $A B C, E$ is the mid-point of median $A D$. Show that $\operatorname{ar}(B E D)=1 / 4 \operatorname{ar}(A B C)$.

Solution:

$\operatorname{ar}(\mathrm{BED})=1 / 2 \times \mathrm{BD} \times \mathrm{DE}$
Since, E is the mid-point of $A D$,
$A E=D E$
Since, $A D$ is the median on side $B C$ of triangle $A B C$,
$B D=D C$
$D E=1 / 2 A D-(i)$
$B D=1 / 2 B C-$ (ii)
From (i) and (ii), we get,
$\operatorname{ar}(\mathrm{BED})=(1 / 2) \times(1 / 2) \mathrm{BC} \times(1 / 2) A D$
$\Rightarrow \operatorname{ar}(B E D)=(1 / 2) \times(1 / 2) \operatorname{ar}(A B C)$
$\Rightarrow \operatorname{ar}(\mathrm{BED})=1 / 4 \operatorname{ar}(\mathrm{ABC})$
Q.5. In the figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line- segment $C D$ is bisected by $A B$ at O, show that: $\operatorname{ar}(A B C)=\operatorname{ar}(A B D)$.

Solution:
In $\triangle A B C, A O$ is the median. ($C D$ is bisected by $A B$ at O)
$\therefore \operatorname{ar}(\mathrm{AOC})=\operatorname{ar}(\mathrm{AOD})-$ (i)
also,
$\triangle B C D, B O$ is the median. ($C D$ is bisected by $A B$ at O)
$\therefore \operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{BOD})$ - (ii)
Adding (i) and (ii),
$\operatorname{ar}(\mathrm{AOC})+\operatorname{ar}(\mathrm{BOC})=\operatorname{ar}(\mathrm{AOD})+\operatorname{ar}(\mathrm{BOD})$
$\Rightarrow \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$
6. D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ of a $\triangle A B C$.

Show that
(i) BDEF is a parallelogram.
(ii) $\operatorname{ar}(\mathrm{DEF})=1 / 4 \operatorname{ar}(\mathrm{ABC})$
(iii) $\operatorname{ar}(\mathrm{BDEF})=1 / 2 \operatorname{ar}(\mathrm{ABC})$

Solution:

(i) In $\triangle A B C$,
$E F \| B C$ and $E F=1 / 2 B C$ (by midpoint theorem)
also,
$B D=1 / 2 B C$ (D is the midpoint)
So, $B D=E F$
also,
$B F$ and DE are parallel and equal to each other.
Therefore, the pair opposite sides are equal in length and parallel to each other.
\therefore BDEF is a parallelogram.
(ii) Proceeding from the result of (i),

BDEF, DCEF, AFDE are parallelograms.
Diagonal of a parallelogram divides it into two triangles of equal area.
$\therefore \operatorname{ar}(\triangle \mathrm{BFD})=\operatorname{ar}(\triangle \mathrm{DEF})$ (For \|gm BDEF) — (i)
also,
$\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{DEF})($ For $\|$ gm DCEF $)-$ (ii)
$\operatorname{ar}(\triangle C D E)=\operatorname{ar}(\triangle D E F)($ For $\| g m ~ A F D E)-$ (iii)
From (i), (ii) and (iii)
$\operatorname{ar}(\triangle \mathrm{BFD})=\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle C D E)=\operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{BFD})+\operatorname{ar}(\triangle \mathrm{AFE})+\operatorname{ar}(\triangle \mathrm{CDE})+\operatorname{ar}(\triangle \mathrm{DEF})=\operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow 4 \operatorname{ar}(\triangle D E F)=\operatorname{ar}(\triangle A B C)$
$\Rightarrow \operatorname{ar}(\mathrm{DEF})=1 / 4 \operatorname{ar}(\mathrm{ABC})$
(iii)Area (\|gm BDEF) $=\operatorname{ar}(\triangle D E F)+\operatorname{ar}(\triangle B D E)$
$\Rightarrow \operatorname{ar}(\mathrm{BDEF})=\operatorname{ar}(\triangle \mathrm{DEF})+\operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}(\mathrm{BDEF})=2 \times \operatorname{ar}(\triangle \mathrm{DEF})$
$\Rightarrow \operatorname{ar}(\mathrm{BDEF})=2 \times 1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$
$\Rightarrow \operatorname{ar}(\mathrm{BDEF})=(1 / 2) \operatorname{ar}(\triangle \mathrm{ABC})$
Q. 7. In the figure, diagonals $A C$ and $B D$ of quadrilateral $A B C D$ intersect at O such that $O B$ = OD.

If $A B=C D$, then show that:
ar (DOC) $=\operatorname{ar}(A O B)$
ar (DCB) $=\operatorname{ar}(\mathrm{ACB})$
$D A|\mid C B$ or $A B C D$ is a parallelogram.
[Hint: From D and B, draw perpendiculars to AC.]

Solution:

Given: $O B=O D$ and $A B=C D$
Construction: $\mathrm{DE} \perp \mathrm{AC}$ and $\mathrm{BF} \perp \mathrm{AC}$ are drawn.
Proof:
(i) In $\triangle \mathrm{DOE}$ and $\triangle \mathrm{BOF}$,
$\angle D E O=\angle B F O$ (Perpendiculars)
$\angle \mathrm{DOE}=\angle \mathrm{BOF}$ (Vertically opposite angles)
OD = OB (Given)
$\therefore, \triangle \mathrm{DOE} \cong \triangle \mathrm{BOF}$ (by AAS congruence criterion)
$\therefore, \mathrm{DE}=\mathrm{BF}(\mathrm{By} \mathrm{CPCT})-(1)$
also, $\operatorname{ar}(\triangle \mathrm{DOE})=\operatorname{ar}(\triangle \mathrm{BOF})$ (Congruent triangles) $-(2)$
Now,
In $\triangle \mathrm{DEC}$ and $\triangle \mathrm{BFA}$,
$\angle D E C=\angle B F A$ (Perpendiculars)
CD = AB (Given)
$D E=B F$ (From eq.1)
$\therefore, \triangle \mathrm{DEC} \cong \triangle \mathrm{BFA}$ (by RHS congruence criterion)
$\therefore, \operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BFA})$ (Congruent triangles) $-(3)$
Adding (2) and (3),
$\operatorname{ar}(\triangle \mathrm{DOE})+\operatorname{ar}(\triangle \mathrm{DEC})=\operatorname{ar}(\triangle \mathrm{BOF})+\operatorname{ar}(\triangle \mathrm{BFA})$
$\Rightarrow \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB})$
(ii) $\operatorname{ar}(\triangle \mathrm{DOC})=\operatorname{ar}(\triangle \mathrm{AOB})$

Adding $\operatorname{ar}(\triangle \mathrm{OCB})$ in LHS and RHS, we get,
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DOC})+\operatorname{ar}(\triangle \mathrm{OCB})=\operatorname{ar}(\triangle \mathrm{AOB})+\operatorname{ar}(\triangle \mathrm{OCB})$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$
(iii) When two triangles have the same base and equal areas, the triangles will be in between the same parallel lines
$\operatorname{ar}(\triangle \mathrm{DCB})=\operatorname{ar}(\triangle \mathrm{ACB})$
DA || BC - (4)
For quadrilateral $A B C D$, one pair of opposite sides are equal $(A B=C D)$ and the other pair of opposite sides are parallel.
$\therefore, \mathrm{ABCD}$ is a parallelogram.
Q. 8. $X Y$ is a line parallel to side $B C$ of a triangle $A B C$. If $B E \| A C$ and $C F \| A B$ meet $X Y$ at E and F respectively, show that
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
Solution:

Given: $X Y|\mid B C, B E \| A C$ and $C F| \mid A B$
To show: $\operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle A C F)$
Proof:
$B C Y E$ is a \|gm as $\triangle A B E$ and \|gm BCYE are on the same base $B E$ and between the same parallel lines $B E$ and $A C$.
$\therefore \operatorname{ar}(\mathrm{ABE})=1 / 2 \operatorname{ar}(\mathrm{BCYE})$
Now,
$C F \| A B$ and $X Y|\mid B C$
$\Rightarrow C F \| A B$ and $X F \| B C$
$\Rightarrow B C F X$ is a parallelogram
As $\triangle A C F$ and $\| g m$ BCFX are on the same base CF and in-between the same parallel $A B$ and FC.
\therefore, ar (\triangle ACF) $=1 / 2$ ar (BCFX)
But,
$\| g m$ BCFX and $\| g m$ BCYE are on the same base $B C$ and between the same parallels $B C$ and EF.
\therefore, ar (BCFX) $=\operatorname{ar}($ BCYE $) .. .(3)$
From (1), (2) and (3), we get
$\operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{ACF})$
$\Rightarrow \operatorname{ar}(B E Y C)=\operatorname{ar}(B X F C)$
As the parallelograms are on the same base $B C$ and in-between the same parallels $E F$ and BC.....(4)

Also,
$\triangle A E B$ and $\| g m$ BEYC is on the same base $B E$ and in-between the same parallels $B E$ and $A C$.
$\Rightarrow \operatorname{ar}(\triangle \mathrm{AEB})=1 / 2 \operatorname{ar}(\mathrm{BEYC})$
Similarly,
$\triangle A C F$ and $\| g m$ BXFC on the same base CF and between the same parallels CF and $A B$.
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ACF})=1 / 2 \operatorname{ar}($ BXFC $)$
From (4), (5) and (6),
$\operatorname{ar}(\triangle \mathrm{AEB})=\operatorname{ar}(\triangle \mathrm{ACF})$
Q.9. Parallelogram $A B C D$ and rectangle $A B E F$ are on the same base $A B$ and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

Solution:

Given,
$\| g m ~ A B C D$ and a rectangle $A B E F$ have the same base $A B$ and equal areas.
To prove,
The perimeter of $\| g m ~ A B C D$ is greater than the perimeter of rectangle ABEF.
Proof,
As we know, the opposite sides of a\|gm and rectangle are equal.
$A B=D C[A s A B C D$ is a $\| g m]$
and, $A B=E F$ [As $A B E F$ is a rectangle]
$D C=E F \ldots$ (i)
Adding AB on both sides, we get,
$\Rightarrow A B+D C=A B+E F$
As we know, the perpendicular segment is the shortest of all the segments that can be drawn to a given line from a point not lying on it.
$\mathrm{BE}<\mathrm{BC}$ and $\mathrm{AF}<\mathrm{AD}$
$\Rightarrow B C>B E$ and $A D>A F$
$\Rightarrow B C+A D>B E+A F$.
Adding (ii) and (iii), we get
$A B+D C+B C+A D>A B+E F+B E+A F$
$\Rightarrow A B+B C+C D+D A>A B+B E+E F+F A$
\Rightarrow perimeter of $\| g m$ ABCD $>$ perimeter of rectangle ABEF.
The perimeter of the parallelogram is greater than that of the rectangle.
Q.10. Diagonals $A C$ and $B D$ of a quadrilateral $A B C D$ intersect each other at E. Show that $\operatorname{ar}(\triangle \mathrm{AED}) \times \operatorname{ar}(\triangle \mathrm{BEC})=\operatorname{ar}(\triangle \mathrm{ABE}) \times \operatorname{ar}(\triangle \mathrm{CDE})$.
[Hint: From A and C, draw perpendiculars to BD.]
Solution:
Given: The diagonal $A C$ and $B D$ of the quadrilateral $A B C D$, intersect each other at point E.
Construction:
From A, draw AM perpendicular to BD

From C, draw CN perpendicular to BD

To Prove: $\operatorname{ar}(\triangle \mathrm{AED}) \operatorname{ar}(\triangle \mathrm{BEC})=\operatorname{ar}(\triangle \mathrm{ABE})$ ar $(\triangle \mathrm{CDE})$
Proof:
$\operatorname{ar}(\triangle A B E)=1 / 2 \times B E \times A M \ldots \ldots \ldots \ldots .$. (i)
$\operatorname{ar}(\triangle A E D)=1 / 2 \times D E \times A M$.
Dividing eq. (ii) by (i) , we get,
$\operatorname{ar}(\triangle \mathrm{AED}) / \operatorname{ar}(\triangle \mathrm{ABE})=[1 / 2 \times \mathrm{DE} \times \mathrm{AM}] /[1 / 2 \times B E \times A M]$
= DE/BE
.(iii)
Similarly,
$\operatorname{ar}(\triangle C D E) / \operatorname{ar}(\triangle \mathrm{BEC})=\mathrm{DE} / \mathrm{BE}$
From eq. (iii) and (iv), we get;
$\operatorname{ar}(\triangle \mathrm{AED}) / \operatorname{ar}(\triangle \mathrm{ABE})=\operatorname{ar}(\triangle \mathrm{CDE}) / \operatorname{ar}(\triangle \mathrm{BEC})$
Therefore, $\operatorname{ar}(\triangle \mathrm{AED}) \times \operatorname{ar}(\triangle \mathrm{BEC})=\operatorname{ar}(\triangle \mathrm{ABE}) \times \operatorname{ar}(\triangle C D E)$

