Chapter 9: Area of triangles and parallelogram

Q.1. In Figure, ABCD is a parallelogram, AE \perp DC and CF \perp AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm, find AD.

Solution:

Given,

AB = CD = 16 cm (Opposite sides of a ||gm are equal)

CF = 10 cm and AE = 8 cm

Now,

Area of parallelogram = Base × Altitude

$$=$$
 CD \times AE $=$ AD \times CF

$$\Rightarrow$$
 16 x 8 = AD x 10

 $\Rightarrow AD = 128/10$

 \Rightarrow AD = 12.8 cm

Q.2. If E, F, G and H are respectively the mid-points of the sides of a parallelogram ABCD, show that ar (EFGH) = 1/2 ar(ABCD).

Solution:

Given,

E, F, G and H are the mid-points of the sides of a parallelogram ABCD, respectively.

To Prove: ar (EFGH) = $\frac{1}{2}$ ar(ABCD)

Construction: H and F are joined.

Proof:

AD || BC and AD = BC (Opposite sides of a ||gm)

 $\Rightarrow \frac{1}{2} AD = \frac{1}{2} BC$

Also,

AH || BF and and DH || CF

 \Rightarrow AH = BF and DH = CF (H and F are midpoints)

Therefore, ABFH and HFCD are parallelograms.

Now,

As we know, Δ EFH and ||gm ABFH, both lie on the same FH the common base and in-between the same parallel lines AB and HF.

```
\therefore area of EFH = \frac{1}{2} area of ABFH — (i)
```

And,

area of GHF = $\frac{1}{2}$ area of HFCD — (ii)

Adding (i) and (ii),

area of Δ EFH + area of Δ GHF = $\frac{1}{2}$ area of ABFH + $\frac{1}{2}$ area of HFCD

 \Rightarrow ar (EFGH) = $\frac{1}{2}$ ar(ABCD)

Q.3. In Figure, P is a point in the interior of a parallelogram ABCD. Show that

(i) $ar(APB) + ar(PCD) = \frac{1}{2} ar(ABCD)$

(ii) ar(APD) + ar(PBC) = ar(APB) + ar(PCD)

[Hint: Through P, draw a line parallel to AB.]

Solution:

(i) A line GH is drawn parallel to AB passing through P.

In a parallelogram,

AB || GH (by construction) — (i)

∴,

 $\mathsf{AD} \mid\mid \mathsf{BC} \Rightarrow \mathsf{AG} \mid\mid \mathsf{BH} \longrightarrow (\mathsf{ii})$

From equations (i) and (ii),

ABHG is a parallelogram.

Now,

 ΔAPB and ||gm ABHG are lying on the same base AB and in-between the same parallel lines AB and GH.

 \therefore ar(\triangle APB) = $\frac{1}{2}$ ar(ABHG) — (iii)

also,

 ΔPCD and ||gm CDGH are lying on the same base CD and in-between the same parallel lines CD and GH.

 \therefore ar(\triangle PCD) = $\frac{1}{2}$ ar(CDGH) — (iv)

Adding equations (iii) and (iv),

 $ar(\Delta APB) + ar(\Delta PCD) = \frac{1}{2} \{ar(ABHG) + ar(CDGH)\}$

 \Rightarrow ar(APB) + ar(PCD) = $\frac{1}{2}$ ar(ABCD)

(ii) A line EF is drawn parallel to AD passing through P.

In the parallelogram,

AD || EF (by construction) - (i)

 $AB \parallel CD \Rightarrow AE \parallel DF - (ii)$

From equations (i) and (ii),

AEDF is a parallelogram.

Now,

 ΔAPD and ||gm AEFD are lying on the same base AD and in-between the same parallel lines AD and EF.

 \therefore ar(\triangle APD) = $\frac{1}{2}$ ar(AEFD) — (iii)

also,

 ΔPBC and ||gm BCFE is lying on the same base BC and in-between the same parallel lines BC and EF.

 \therefore ar(\triangle PBC) = $\frac{1}{2}$ ar(BCFE) — (iv)

Adding equations (iii) and (iv),

 $ar(\Delta APD) + ar(\Delta PBC) = \frac{1}{2} \{ar(AEFD) + ar(BCFE)\}$

 \Rightarrow ar(APD) + ar(PBC) = ar(APB) + ar(PCD)

Q.4. In a triangle ABC, E is the mid-point of median AD. Show that ar(BED) = 1/4 ar(ABC).

Solution:

 $ar(BED) = \frac{1}{2} \times BD \times DE$

Since, E is the mid-point of AD,

AE = DE

Since, AD is the median on side BC of triangle ABC,

BD = DC

 $DE = \frac{1}{2} AD - (i)$

BD = ½ BC — (ii)

From (i) and (ii), we get,

ar(BED) = (1/2) × (1/2) BC × (1/2)AD

 $\Rightarrow ar(BED) = (\frac{1}{2}) \times (\frac{1}{2}) ar(ABC)$

 \Rightarrow ar(BED) = $\frac{1}{4}$ ar(ABC)

Q.5. In the figure, ABC and ABD are two triangles on the same base AB. If line- segment CD is bisected by AB at O, show that: ar(ABC) = ar(ABD).

Solution:

In $\triangle ABC$, AO is the median. (CD is bisected by AB at O)

$$\therefore$$
 ar(AOC) = ar(AOD) — (i)

also,

ΔBCD, BO is the median. (CD is bisected by AB at O)

 \therefore ar(BOC) = ar(BOD) — (ii)

Adding (i) and (ii),

ar(AOC) + ar(BOC) = ar(AOD) + ar(BOD)

 $\Rightarrow ar(ABC) = ar(ABD)$

6. D, E and F are respectively the mid-points of the sides BC, CA and AB of a \triangle ABC.

Show that

(i) BDEF is a parallelogram.

(ii) $ar(DEF) = \frac{1}{4} ar(ABC)$

(iii) ar (BDEF) = $\frac{1}{2}$ ar(ABC)

Solution:

(i)In ΔABC,

EF || BC and EF = $\frac{1}{2}$ BC (by midpoint theorem) also,

 $BD = \frac{1}{2} BC$ (D is the midpoint)

So, BD = EF

also,

BF and DE are parallel and equal to each other.

Therefore, the pair opposite sides are equal in length and parallel to each other.

 \therefore BDEF is a parallelogram.

(ii) Proceeding from the result of (i),

BDEF, DCEF, AFDE are parallelograms.

Diagonal of a parallelogram divides it into two triangles of equal area.

```
\therefore ar(\DeltaBFD) = ar(\DeltaDEF) (For ||gm BDEF) — (i)
```

also,

 $ar(\Delta AFE) = ar(\Delta DEF)$ (For ||gm DCEF) — (ii)

```
ar(\Delta CDE) = ar(\Delta DEF) (For ||gm AFDE) - (iii)
```

From (i), (ii) and (iii)

 $ar(\Delta BFD) = ar(\Delta AFE) = ar(\Delta CDE) = ar(\Delta DEF)$

 $\Rightarrow ar(\Delta BFD) + ar(\Delta AFE) + ar(\Delta CDE) + ar(\Delta DEF) = ar(\Delta ABC)$

 \Rightarrow 4 ar(Δ DEF) = ar(Δ ABC)

 \Rightarrow ar(DEF) = $\frac{1}{4}$ ar(ABC)

```
(iii)Area (||gm BDEF) = ar(\Delta DEF) + ar(\Delta BDE)
```

```
\Rightarrow ar(BDEF) = ar(\DeltaDEF) + ar(\DeltaDEF)
```

```
\Rightarrow ar(BDEF) = 2x ar(\Delta DEF)
```

```
\Rightarrow ar(BDEF) = 2× \frac{1}{4} ar(\DeltaABC)
```

 \Rightarrow ar(BDEF) = (1/2)ar(\triangle ABC)

Q. 7. In the figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD.

If AB = CD, then show that:

ar (DOC) = ar (AOB)

ar (DCB) = ar (ACB)

DA || CB or ABCD is a parallelogram.

[Hint: From D and B, draw perpendiculars to AC.]

Solution:

Given: OB = OD and AB = CDConstruction: $DE \perp AC$ and $BF \perp AC$ are drawn. Proof: (i) In ΔDOE and ΔBOF ,

 $\angle DEO = \angle BFO$ (Perpendiculars)

 $\angle DOE = \angle BOF$ (Vertically opposite angles)

OD = OB (Given)

:., $\triangle DOE \cong \triangle BOF$ (by AAS congruence criterion)

 \therefore , DE = BF (By CPCT) — (1)

also, $ar(\Delta DOE) = ar(\Delta BOF)$ (Congruent triangles) — (2)

Now,

In ΔDEC and ΔBFA ,

 $\angle DEC = \angle BFA$ (Perpendiculars)

CD = AB (Given)

DE = BF (From eq.1)

:., $\Delta DEC \cong \Delta BFA$ (by RHS congruence criterion)

:, $ar(\Delta DEC) = ar(\Delta BFA)$ (Congruent triangles) — (3)

Adding (2) and (3),

 $ar(\Delta DOE) + ar(\Delta DEC) = ar(\Delta BOF) + ar(\Delta BFA)$

 \Rightarrow ar (DOC) = ar (AOB)

(ii) $ar(\Delta DOC) = ar(\Delta AOB)$

Adding $ar(\Delta OCB)$ in LHS and RHS, we get,

 \Rightarrow ar(Δ DOC)+ar(Δ OCB)=ar(Δ AOB)+ar(Δ OCB)

 $\Rightarrow ar(\Delta DCB) = ar(\Delta ACB)$

(iii) When two triangles have the same base and equal areas, the triangles will be in between the same parallel lines

 $ar(\Delta DCB) = ar(\Delta ACB)$

DA || BC — (4)

For quadrilateral ABCD, one pair of opposite sides are equal (AB = CD) and the other pair of opposite sides are parallel.

:, ABCD is a parallelogram.

Q. 8. XY is a line parallel to side BC of a triangle ABC. If BE \parallel AC and CF \parallel AB meet XY at E and F respectively, show that

$ar(\Delta ABE) = ar(\Delta ACF)$

Solution:

Given: XY || BC, BE || AC and CF || AB

To show: $ar(\Delta ABE) = ar(\Delta ACF)$

Proof:

BCYE is a ||gm as Δ ABE and ||gm BCYE are on the same base BE and between the same parallel lines BE and AC.

 \therefore , ar(ABE) = $\frac{1}{2}$ ar(BCYE) ... (1)

Now,

CF || AB and XY || BC

 \Rightarrow CF || AB and XF || BC

 \Rightarrow BCFX is a parallelogram

As ΔACF and ||gm BCFX are on the same base CF and in-between the same parallel AB and FC.

∴, ar (ΔACF)= ½ ar (BCFX) … (2)

But,

 $||\mbox{gm BCFX}$ and $||\mbox{gm BCYE}$ are on the same base BC and between the same parallels BC and EF.

 \therefore , ar (BCFX) = ar(BCYE) ... (3)

From (1), (2) and (3), we get

ar (ΔABE) = ar(ΔACF)

 \Rightarrow ar(BEYC) = ar(BXFC)

As the parallelograms are on the same base BC and in-between the same parallels EF and BC.....(4)

Also,

△AEB and ||gm BEYC is on the same base BE and in-between the same parallels BE and AC.

 $\Rightarrow ar(\triangle AEB) = \frac{1}{2} ar(BEYC) \dots (5)$

Similarly,

 \triangle ACF and ||gm BXFC on the same base CF and between the same parallels CF and AB.

 \Rightarrow ar(\triangle ACF) = $\frac{1}{2}$ ar(BXFC)(6)

From (4), (5) and (6),

 $ar(\triangle AEB) = ar(\triangle ACF)$

Q.9. Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

Solution:

Given,

||gm ABCD and a rectangle ABEF have the same base AB and equal areas.

To prove,

The perimeter of ||gm ABCD is greater than the perimeter of rectangle ABEF.

Proof,

As we know, the opposite sides of allgm and rectangle are equal.

AB = DC [As ABCD is a ||gm]

and, AB = EF [As ABEF is a rectangle]

DC = EF ... (i)

Adding AB on both sides, we get,

 \Rightarrow AB + DC = AB + EF ... (ii)

As we know, the perpendicular segment is the shortest of all the segments that can be drawn to a given line from a point not lying on it.

BE < BC and AF < AD

 \Rightarrow BC > BE and AD > AF

 \Rightarrow BC + AD > BE + AF ... (iii)

Adding (ii) and (iii), we get

AB + DC + BC + AD > AB + EF + BE + AF

 \Rightarrow AB + BC + CD + DA > AB + BE + EF + FA

 \Rightarrow perimeter of ||gm ABCD > perimeter of rectangle ABEF.

The perimeter of the parallelogram is greater than that of the rectangle.

Q.10. Diagonals AC and BD of a quadrilateral ABCD intersect each other at E. Show that

 $ar(\Delta AED) \times ar(\Delta BEC) = ar (\Delta ABE) \times ar (\Delta CDE).$

[Hint: From A and C, draw perpendiculars to BD.]

Solution:

Given: The diagonal AC and BD of the quadrilateral ABCD, intersect each other at point E.

Construction:

From A, draw AM perpendicular to BD

From C, draw CN perpendicular to BD

To Prove: $ar(\Delta AED) ar(\Delta BEC) = ar(\Delta ABE) ar(\Delta CDE)$ Proof: $ar(\Delta ABE) = \frac{1}{2} \times BE \times AM$(i) $ar(\Delta AED) = \frac{1}{2} \times DE \times AM$(ii) Dividing eq. (ii) by (i), we get, $ar(\Delta AED)/ar(\Delta ABE) = \frac{1}{2} \times DE \times AM]/\frac{1}{2} \times BE \times AM]$ = DE/BE.....(iii) Similarly, $ar(\Delta CDE)/ar(\Delta BEC) = DE/BE$(iv) From eq. (iii) and (iv), we get; $ar(\Delta AED)/ar(\Delta ABE) = ar(\Delta CDE)/ar(\Delta BEC)$ Therefore, $ar(\Delta AED) \times ar(\Delta BEC) = ar(\Delta ABE) \times ar(\Delta CDE)$