Chapter 7:Cordinate Geometry

Exercise 7.1

Question 1:

The distance of the point $P(2,3)$ from the X-axis is
(a) 2
(b) 3
(c) 1
(d) 5

Solution:

(b) We know that, if (x, y) is any point on the cartesian plane in first quadrant.

Then, $x=$ Perpendicular distance from Y-axis
and $y=$ Perpendicular distance from X-axis

Distance of the point $P(2,3)$ from the X-axis = Ordinate of a point $P(2,3)=3$.

Question 2:

The distance between the points $\mathrm{A}(0,6)$ and $5(0,-2)$ is
(a) 6
(b) 8
(c) 4
(d) 2

Solution:

(b) \vee Distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$,

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Here,

$$
x_{1}=0, y_{1}=6 \text { and } x_{2}=0, y_{2}=-2
$$

\therefore Distance between $A(0,6)$ and $B(0,-2)$,

$$
\begin{aligned}
A B & =\sqrt{(0-0)^{2}+(-2-6)^{2}} \\
& =\sqrt{0+(-8)^{2}}=\sqrt{8^{2}}=8
\end{aligned}
$$

Question 3:

The distance of the point $P(-6,8)$ from the origin is
(a) 8
(b) $2 \sqrt{ } 7$
(c) 10
(d) 6

Solution:

(c) \therefore Distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Here, $\quad x_{1}=-6, y_{1}=8$ and $x_{2}=0, y_{2}=0$
\therefore Distance between $P(-6,8)$ and origin i.e., $O(0,0)$,

$$
\begin{aligned}
P O & =\sqrt{[0-(-6)]^{2}+(0-8)^{2}} \\
& =\sqrt{(6)^{2}+(-8)^{2}} \\
& =\sqrt{36+64}=\sqrt{100}=10
\end{aligned}
$$

Question 4:

The distance between the points $(0,5)$ and $(-5,0)$ is
(a) 5
(b) $5 \sqrt{ } 2$
(c) $2 \sqrt{ } 5$
(d) 10

Solution:

(b) \therefore Distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$,

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Here, $x_{1}=0, y_{1}=5$ and $x_{2}=-5, y_{2}=0$
\therefore Distance between the points $(0,5)$ and $(-5,0)$

$$
\begin{aligned}
& =\sqrt{(-5-0)^{2}+(0-5)^{2}} \\
& =\sqrt{25+25}=\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

Question 5:

If $A O B C$ is a rectangle whose three vertices are $A(0,3), O(0,0)$ and $B(5,0)$, then the length of its diagonal is
(a) 5
(b) 3
(c) $\sqrt{ } 34$
(d) 4

Solution:

(c)

Now, length of the diagonal $A B=$ Distance between the points $A(0,3)$ and $B(5,0)$.
\therefore Distance between the points (x, y,) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$),

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Here, $x_{1}=0, y_{1}=3$ and $x_{2}=5, y_{2}=0$
\therefore Distance between the points $A(0,3)$ and $B(5,0)$

$$
\begin{aligned}
A B & =\sqrt{(5-0)^{2}+(0-3)^{2}} \\
& =\sqrt{25+9}=\sqrt{34}
\end{aligned}
$$

Hence, the required length of its diagonal is $\sqrt{ } 34$.

Question 6:

The perimeter of a triangle with vertices $(0,4),(0,0)$ and $(3,0)$ is
(a) 5
(b)
12
(c) 11
(d) $7+\sqrt{ } 5$

Solution:

(b) we Further, adding all the distance of a triangle to get the perimeter of a triangle.We plot the vertices of a triangle i.e., $(0,4),(0,0)$ and $(3,0)$ on the paper shown as given below

Now, perimeter of $\triangle A O B=$ Sum of the length of all its sides $=d(A O)+d(O B)+d(A B)$
\therefore Distance between the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ($\mathrm{x}_{2}, \mathrm{y}_{2}$),

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$=$ Distance between $A(0,4)$ and $O(0,0)+$ Distance between $O(0,0)$ and $B(3,0)$ + Distance between $A(0,4)$ and $B(3,0)$
$=\sqrt{(0-0)^{2}+(0-4)^{2}}+\sqrt{(3-0)^{2}+(0-0)^{2}}+\sqrt{(3-0)^{2}+(0-4)^{2}}$
$=\sqrt{0+16}+\sqrt{9+0}+\sqrt{(3)^{2}+(4)^{2}}=4+3+\sqrt{9+16}$
$=7+\sqrt{25}=7+5=12$
Hence, the required perimeter of triangle is 12 .

Question 7:

The area of a triangle with vertices $A(3,0), B(7,0)$ and $C(8,4)$ is
(a) 14
(b) 28
(c) 8
(d) 6

Solution:

(c) Area of $\triangle A B C$ whose Vertices $A \equiv\left(x_{1}, y_{1}\right), B \equiv\left(x_{2}, y_{2}\right)$ and $C \equiv\left(x_{3}, y_{3}\right)$ are given by

$$
\Delta=\left|\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right|
$$

Here, $x_{1}=3, y_{1}=0, x_{2}=7, y_{2}=0, x_{3}=8$ and $y_{3}=4$
$\therefore \quad \Delta=\left|\frac{1}{2}[3(0-4)+7(4-0)+8(0-0)]\right|=\left|\frac{1}{2}(-12+28+0)\right|=\left|\frac{1}{2}(16)\right|=8$
Hence, the required area of $A A B C$ is 8 .

Question 8:

The points $(-4,0),(4,0)$ and $(0,3)$ are the vertices of a
(a) right angled triangle
(b) isosceles triangle
(c) equilateral triangle
(d) scalene triangle

Solution:

(b) Let $A(-4,0), B(4,0), C(0,3)$ are the given vertices.

Now, distance between $A(-4,0)$ and $B(4,0)$,

$$
A B=\sqrt{[4-(-4)]^{2}+(0-0)^{2}}
$$

$\left[\because\right.$ distance between two points $\left(x_{1}, y_{1}\right)$ and $\left.\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]$

$$
=\sqrt{(4+4)^{2}}=\sqrt{8^{2}}=8
$$

Distance between $B(4,0)$ and $C(0,3)$,

$$
B C=\sqrt{(0-4)^{2}+(3-0)^{2}}=\sqrt{16+9}=\sqrt{25}=5
$$

Distance between $A(-4,0)$ and $C(0,3)$,

$$
A C=\sqrt{[0-(-4)]^{2}+(3-0)^{2}}=\sqrt{16+9}=\sqrt{25}=5
$$

$\because \quad B C=A C$
Hence, $\triangle A B C$ is an isosceles triangle because an isosceles triangle has two sides equal.

Question 9:

The point which divides the line segment joining the points $(7,-6)$ and $(3,4)$ in ratio 1: 2 internally lies in the
(a) I quadrant
(b) II quadrant
(c) III
quadrant
(d) IV quadrant

Solution:

(d) If $P(x, y)$ divides the line segment joining $A\left(x_{1}, y_{2}\right)$ and $B\left(x_{2}, y_{2}\right)$ internally in the ratio

$$
m: n \text {, then } x=\frac{m x_{2}+n x_{1}}{m+n} \text { and } y=\frac{m y_{2}+n y_{1}}{m+n}
$$

Given that,

$$
x_{1}=7, y_{1}=-6, x_{2}=3, y_{2}=4, \quad m=1 \text { and } n=2
$$

$$
\begin{array}{ll}
\therefore & x=\frac{1(3)+2(7)}{1+2}, y=\frac{1(4)+2(-6)}{1+2} \\
\Rightarrow & x=\frac{3+14}{3}, y=\frac{4-12}{3} \\
\Rightarrow & x=\frac{17}{3}, y=-\frac{8}{3}
\end{array}
$$

So, $(x, y)=\left(\frac{17}{3},-\frac{8}{3}\right)$ lies in IV quadrant.
[since, in IV quadrant, x-coordinate is positive and y-coordinate is negative]

Question 10:

The point which lies on the perpendicular bisector of the line segment joining the points $A(-2,-5)$ and $B(2,5)$ is
(a) $(0,0)$
(b) $(0,2)$
(c) $(2,0)$
(d) (-2,0)

Solution:

(a) We know that, the perpendicular bisector of the any line segment divides the ${ }^{\wedge}$ jjpe segment into two equal parts i.e., the perpendicular bisector of the line segment always passes through the mid-point of the line segment.
Mid-point of the line segment joining the points $A(-2,-5)$ and $S(2,5)$

$$
=\left(\frac{-2+2}{2}, \frac{-5+5}{2}\right)=(0,0)
$$

[since, mid-point of any line segment which passes through the points

$$
\left.\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]
$$

Hence, $(0,0)$ is the required point lies on the perpendicular bisector of the lines segment.

Question 11:

The fourth vertex D of a parallelogram $A B C D$ whose three vertices are $A(-2,3), B(6$, 7) and $C(8,3)$ is
(a) $(0,1)$
(b) $(0,-1)$
(c) $(-1,0)$
$(1,0)$
(d)

Solution:

(b) Let the fourth vertex of parallelogram, $\mathrm{D} \equiv\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$ and L, M be the middle points of AC and BD, respectively,
Then, $L \equiv\left(\frac{-2+8}{2}, \frac{3+3}{2}\right) \equiv(3,3)$
$\left[\right.$ since, mid -point of a line segment having points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\left.=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]
$$

and

$$
M=\left(\frac{6+x_{4}}{2}, \frac{7+y_{4}}{2}\right)
$$

Since, $A B C D$ is a parallelogram, therefore diagonals $A C$ and $B D$ will bisect each other. Hence, L and M are the same points.

$$
\begin{array}{ll}
\therefore & 3=\frac{6+x_{4}}{2} \text { and } 3=\frac{7+y_{4}}{2} \\
\Rightarrow & 6=6+x_{4} \text { and } 6=7+y_{4} \\
\Rightarrow & x_{4}=0 \quad \text { and } y_{4}=6-7 \\
\therefore & x_{4}=0 \quad \text { and } y_{4}=-1
\end{array}
$$

Hence, the fourth vertex of parallelogram is $D s\left(x_{4}, y_{4}\right) s(0,-1)$.

Question 12:

If the point $P(2,1)$ lies on the line segment joining points $A(4,2)$ and $6(8,4)$, then
(a) $A P=\frac{1}{3} A B$
(b) $\mathrm{AP}=\mathrm{PB}$
(c) $\mathrm{PB}=\frac{1}{3} \mathrm{AB}$
(d) $A P=\frac{1}{2} A B$

Solution:

(d) Given that, the point $P(2,1)$ lies on the line segment joining the points $A(4,2)$ and $8(8,4)$, which shows in the figure below:

Now, distance between $A(4,2)$ and $(2,1), A P=\sqrt{(2-4)^{2}+(1-2)^{2}}$
$\left[\because\right.$ distance between two points two points $\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right), d$

$$
\left.=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(x_{2}-y_{1}\right)^{2}}\right]
$$

$$
=\sqrt{(-2)^{2}+(-1)^{2}}=\sqrt{4+1}=\sqrt{5}
$$

Distance between $A(4,2)$ and $B(8,4)$,

$$
\begin{aligned}
A B & =\sqrt{(8-4)^{2}+(4-2)^{2}} \\
& =\sqrt{(4)^{2}+(2)^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Distance between $B(8,4)$ and $P(2,1), B P=\sqrt{(8-2)^{2}+(4-1)^{2}}$

$$
\begin{aligned}
& =\sqrt{6^{2}+3^{2}}=\sqrt{36+9}=\sqrt{45}=3 \sqrt{5} \\
\therefore \quad A B & =2 \sqrt{5}=2 A P \Rightarrow A P=\frac{A B}{2}
\end{aligned}
$$

Hence, required condition is $\mathrm{AP}=\frac{A B}{2}$

Question 13:

If $P\left(\frac{1}{2}, 4\right)$ is the mid-point of the line segment joining the points $Q(-6,5)$ and $f(-2$, 3), then the value of a is
(a)-4
(b) -12
(c) 12
(d) -6

Solution:

(b) Given that, $P\left(\frac{1}{2}, 4\right)$ is the mid-point of the line segment joining the points $Q(-6,5)$ and
$R(-2,3)$, which shows in the figure given below

\therefore Mid-point of $Q R=P\left(\frac{-6-2}{2}, \frac{5+3}{2}\right)=P(-4,4)$
since, mid-point of line segment having points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\left.=\left(\frac{\left(x_{1}+x_{2}\right)}{2}, \frac{\left(y_{1}+y_{2}\right)}{2}\right)\right]
$$

But mid-point $P\left(\frac{a}{3}, 4\right)$ is given.
$\therefore \quad\left(\frac{a}{3}, 4\right)=(-4,4)$
On comparing the coordinates, we get

$$
\begin{array}{ll}
& \frac{a}{3}=-4 \\
\therefore & a=-12
\end{array}
$$

Hence, the required value of a is -12 .

Question 14:

The perpendicular bisector of the line segment joining the points $A(1,5)$ and $8(4,6)$ cuts the y-axis at
(a) $(0,13)$
(b) $(0,-13)$
(c) $(0,12)$
(d) $(13,0)$

Solution:

(a) Firstly, we plot the points of the line segment on the paper and join them.

We know that, the perpendicular bisector of the line segment $A B$ bisect the segment $A B$, i.e., perpendicular bisector of line segment $A B$ passes through the mid-point of $A B$.

$$
\begin{array}{ll}
\therefore & \text { Mid-point of } A B=\left(\frac{1+4}{2}, \frac{5+6}{2}\right) \\
\Rightarrow & \\
\Rightarrow & P=\left(\frac{5}{2}, \frac{11}{2}\right)
\end{array}
$$

$\left[\because\right.$ mid-point of line segment passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

$$
\left.=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]
$$

Now, we draw a straight line on paper passes through the mid-point P. We see that
the perpendicular bisector cuts the Y -axis at the point $(0,13)$.
Hence, the required point is $(0,13)$.

Alternate Method

We know that, the equation of line which passes through the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and (x_{2}, y_{2}) is

$$
\begin{equation*}
\left(y-y_{1}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \tag{i}
\end{equation*}
$$

Here,

$$
x_{1}=1, y_{1}=5 \text { and } x_{2}=4, y_{2}=6
$$

So, the equation of line segment joining the points $A(1,5)$ and $B(4,6)$ is

$$
\begin{array}{rlrl}
& & (y-5) & =\frac{6-5}{4-1}(x-1) \\
\Rightarrow & (y-5) & =\frac{1}{3}(x-1) \\
\Rightarrow & 3 y-15 & =x-1 \\
\Rightarrow & 3 y=x-14 \Rightarrow y & =\frac{1}{3} x-\frac{14}{3} \tag{ii}
\end{array}
$$

\therefore Slope of the line segment, $m_{1}=\frac{1}{3}$
If two lines are perpendicular to each other, then the relation between its slopes is

$$
\begin{equation*}
m_{1} \cdot m_{2}=-1 \tag{iii}
\end{equation*}
$$

where, $\quad m_{1}=$ Slope of line 1
and $\quad=$ Slope of line 2
Also, we know that the perpendicular bisector of the line segment is perpendicular on the line segment.
Let slope of line segment is m_{2}.
From Eq. (iii),

$$
\begin{aligned}
& \\
m_{1} \cdot m_{2} & =\frac{1}{3} \cdot m_{2}=-1 \\
\Rightarrow & m_{2}
\end{aligned}=-3
$$

Also we know that the perpendicular bisector is passes through the mid-point of line segment.
$\therefore \quad$ Mid-point of line segment $=\left(\frac{1+4}{2}, \frac{5+6}{2}\right)=\left(\frac{5}{2}, \frac{11}{2}\right)$
Equation of perpendicular bisector, which has slope (-3) and passes through the point $\left(\frac{5}{2}, \frac{11}{2}\right)$, is

$$
\left(y-\frac{11}{2}\right)=(-3)\left(x-\frac{5}{2}\right)
$$

[since, equation of line passes through the point $\left(x_{1}, y_{1}\right)$ and having slope m

$$
\left.\left(y-y_{1}\right)=m\left(x-x_{1}\right)\right]
$$

$$
\begin{array}{ll}
\Rightarrow & (2 y-11)=-3(2 x-5) \\
\Rightarrow & 2 y-11=-6 x+15 \\
\Rightarrow & 6 x+2 y=26 \\
\Rightarrow & 3 x+y=13 \tag{iv}
\end{array}
$$

If the perpendicular bisector cuts the γ-axis, then put $x=0$ in Eq. (iv),

$$
3 \times 0+y=13 \Rightarrow y=13
$$

So, the required point is $(0,13)$.

Question 15:

The coordinates of the point which is equidistant from the three vertices of the $\triangle A O B$ as shown in the figure is

(a) (x, y)
(b) (y, x)
(c) $\left(\frac{x}{2}, \frac{y}{2}\right)$
(d) $\left(\frac{y}{2}, \frac{x}{2}\right)$

Solution:

(a) Let the coordinate of the point which is equidistant from the three vertices $0(0,0)$, $A(0,2 y)$ and $B(2 x, 0)$ is $P(h, k)$.
Then,
$\mathrm{PO}=\mathrm{PA}=\mathrm{PB}$
\Rightarrow
$(\mathrm{PO})^{2}=(\mathrm{PA})^{2}=$
$(\mathrm{PB})^{2}$

By distance formula,

$$
\begin{align*}
& \\
& {\left[\sqrt{(h-0)^{2}+(k-0)^{2}}\right]^{2}=\left[\sqrt{(h-0)^{2}+(k-2 y)^{2}}\right]^{2}=\left[\sqrt{(h-2 x)^{2}+(k-0)^{2}}\right]^{2} } \tag{ii}\\
\Rightarrow \quad & h^{2}+k^{2}=h^{2}+(k-2 y)^{2}=(h-2 x)^{2}+k^{2}
\end{align*}
$$

Taking first two equations, we get

$$
\begin{array}{rlrl}
& & h^{2}+k^{2} & =h^{2}+(k-2 y)^{2} \\
\Rightarrow & k^{2} & =k^{2}+4 y^{2}-4 y k \Rightarrow 4 y(y-k)=0 \\
\Rightarrow & y & =k & {[\because y \neq 0]}
\end{array}
$$

Taking first and third equations, we get

$$
\begin{array}{rlrl}
& & h^{2}+k^{2} & =(h-2 x)^{2}+k^{2} \\
\Rightarrow & & h^{2} & =h^{2}+4 x^{2}-4 x h \\
\Rightarrow & & 4 x(x-h) & =0 \\
\Rightarrow & x & =h \\
\therefore & & \text { Required points } & =(h, k)=(x, y)
\end{array} \quad[\because x \neq 0]
$$

Question 16:

If a circle drawn with origin as the centre passes through $\left(\frac{13}{2}, 0\right)$, then the point which does not lie in the interior of the circle is
(a) $\left(\frac{-3}{4}, 1\right)$
(b) $\left(2, \frac{7}{3}\right)$
(c) $\left(5, \frac{-1}{2}\right)$
(d) $\left(-6, \frac{5}{2}\right)$

Solution:

(d) It is given that, centre of circle in $(0,0)$ and passes through the point $\left(\frac{13}{2}, 0\right)$. \therefore Radius of circle $=$ Distance between $(0,0)$ and $\left(\frac{13}{2}, 0\right)$

$$
=\sqrt{\left(\frac{13}{2}-0\right)^{2}+(0-0)^{2}}=\sqrt{\left(\frac{13}{2}\right)^{2}}=\frac{13}{2}=6.5
$$

A point lie outside on or inside the circles of the distance of it from the centre of the circle is greater than equal to or less than radius of the circle.
Now, to get the correct option we have to check the option one by one.
(a) Distance between $(0,0)$ and $\left(\frac{-3}{4}, 1\right)=\sqrt{\left(\frac{-3}{4}-0\right)^{2}+(1-0)^{2}}$

$$
=\sqrt{\frac{9}{16}+1}=\sqrt{\frac{25}{16}}=\frac{5}{4}=1.25<6.5
$$

So, the point $\left(-\frac{3}{4}, 1\right)$ lies interior to the circle.
(b) Distance between $(0,0)$ and $\left(2, \frac{7}{3}\right)=\sqrt{(2-0)^{2}+\left(\frac{7}{3}-0\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{4+\frac{49}{9}}=\sqrt{\frac{36+49}{9}} \\
& =\sqrt{\frac{85}{9}}=\frac{9.22}{3}=3.1<6.5
\end{aligned}
$$

So, the point $\left(2, \frac{7}{3}\right)$ lies inside the circle.
(c) Distance between $(0,0)$ and $\left(5, \frac{-1}{2}\right)=\sqrt{(5-0)^{2}+\left(-\frac{1}{2}-0\right)^{2}}$

$$
\begin{array}{ll}
& =\sqrt{25+\frac{1}{4}}=\sqrt{\frac{101}{4}}=\frac{10.04}{2} \\
\Rightarrow \quad & =5.02<6.5
\end{array}
$$

So, the point $\left(5,-\frac{1}{2}\right)$ lies inside the circle.
(d) Distance between $(0,0)$ and $\left(-6, \frac{5}{2}\right)=\sqrt{(-6-0)^{2}+\left(\frac{5}{2}-0\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{36+\frac{25}{4}}=\sqrt{\frac{144+25}{4}} \\
& =\sqrt{\frac{169}{4}}=\frac{13}{2}=6.5
\end{aligned}
$$

So, the point $\left(-6, \frac{5}{2}\right)$ lis an the circle i.e., does not lie interior to the circle.

Question 17:

A line intersects the y-axis and X-axis at the points P and Q, respectively. If $(2,-5)$ is the mid-point of $P Q$, then the coordinates of P and Q are, respectively
(a) $(0,-5)$ and $(2,0)$
(b) $(0,10)$ and $(-4,0)$
(c) $(0,4)$ and $(-10,0)$
(d) $(0,-10)$ and $(4,0)$

Solution:

(d) Let the coordinates of P and $0(0, \mathrm{y})$ and ($\mathrm{x}, 0)$, respectively.

So, the mid-point of $P(0, y)$ and $Q(x, 0)$ is $M\left(\frac{0+x}{2}, \frac{y+0}{2}\right)$
$\left[\because\right.$ mid-point of a line segment having points $\left(x_{1}, y_{1}\right)$ and $\left.\left(x_{2}, y_{2}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]$
But it is given that, mid-point of $P Q$ is $(2,-5)$.

So, the coordinates of P and Q are $(0,-10)$ and $(4,0)$.

Question 18:

The area of a triangle with vertices $(a, b+c),(b, c+a)$ and $(c, a+b)$ is
(a) $(a+b+c)^{2}$
(b) 0
(c) $(a+b+$
c)
(d) abc

Solution:

(b) Let the vertices of a triangle are, $A \equiv\left(x_{1}, y_{1}\right) \equiv(a, b+c)$
$\mathrm{B} \equiv\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \equiv(\mathrm{b}, \mathrm{c}+\mathrm{a})$ and $\mathrm{C}=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right) \equiv(\mathrm{c}, \mathrm{a}+\mathrm{b})$

$$
\begin{aligned}
\because \text { Area of } \triangle A B C & =\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
\therefore \quad \Delta & =\frac{1}{2}[a(c+a-a-b)+b(a+b-b-c)+c(b+c-c-a)] \\
& =\frac{1}{2}[a(c-b)+b(a-c)+c(b-a)] \\
& =\frac{1}{2}(a c-a b+a b-b c+b c-a c)=\frac{1}{2}(0)=0
\end{aligned}
$$

Hence, the required area of triangle is. 0 .

Question 19:

If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then the value of pis
(a) 4 only
(b) ± 4
(c) -4 only
(d) 0

Solution:

(b) According to the question, the distance between the points $(4, p)$ and $(1,0)=5$ i.e.,

$$
\sqrt{(1-4)^{2}+(0-p)^{2}}=5
$$

$$
\begin{array}{cc}
& {\left[\because \text { distance between the points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]} \\
\Rightarrow & \sqrt{(-3)^{2}+p^{2}}=5 \\
\Rightarrow & \sqrt{9+p^{2}}=5
\end{array}
$$

On squaring both the sides, we get

$$
\Rightarrow \begin{aligned}
9+p^{2} & =25 \\
& p^{2}
\end{aligned}=16 \Rightarrow p= \pm 4
$$

Hence, the required value of p is ± 4,

Question 20:

If the points $A(1,2), B(0,0)$ and $C(a, b)$ are collinear, then
(a) $a=b$
(b) $a=2 b$
(c) $2 \mathrm{a}=\mathrm{b}$
(d) $a=-b$

Solution:

(c) Let the given points are $B=\left(x_{1}, y_{1}\right)=(1,2)$,
$\mathrm{B}=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(0,0)$ and $\mathrm{C} 3=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=(\mathrm{a}, \mathrm{b})$.
\because Area of $\triangle A B C \Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
\begin{aligned}
\therefore \quad \Delta & =\frac{1}{2}[1(0-b)+0(b-2)+a(2-0)] \\
& =\frac{1}{2}(-b+0+2 a)=\frac{1}{2}(2 a-b)
\end{aligned}
$$

Since, the points $A(1,2), B(0,0)$ and $C(a, b)$ are collinear, then area of $\triangle A B C$ should be equal to zero.

$$
\begin{aligned}
\text { i.e., } & \text { area of } \triangle A B C & =0 \\
\Rightarrow & \frac{1}{2}(2 a-b) & =0 \\
\Rightarrow & 2 a-b & =0 \\
\Rightarrow & 2 a & =b
\end{aligned}
$$

Hence, the required relation is $2 \mathrm{a}=\mathrm{b}$.

Exercise 7.2 Very Short Answer Type Questions

Question 1:

$\triangle A B C$ with vertices $A(0,-2,0), B(2,0)$ and $C(0,2)$ is similar to $\triangle D E F$ with vertices D $(-4,0), E(4,0)$ and $F(0,4)$.

Solution:

True
\therefore Distance between $A(2,0)$ and $B(2,0), A B=\sqrt{[2-(2)]^{2}+(0-0)^{2}}=4$ [\because distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$] Similarly, distance between $B(2,0)$ and $C(0,2), B C=\sqrt{(0-2)^{2}+(2-0)^{2}}=\sqrt{4+4}=2 \sqrt{2}$ In $\triangle A B C$, distance between $C(0,2)$ and $A-(2,0)$,

$$
C A=\sqrt{\left[0-(2)^{2}\right]+(2-0)^{2}}=\sqrt{4+4}=2 \sqrt{2}
$$

Distance between $F(0,4)$ and $D(-4,0), F D=\sqrt{(0+4)^{2}+(0-4)^{2}}=\sqrt{4^{2}+(-4)^{2}}=4 \sqrt{2}$
Distance between $F(0,4)$ and $E(4,0), F E=\sqrt{(4-0)^{2}+(0-4)^{2}}=\sqrt{4^{2}+4^{2}}=4 \sqrt{2}$ and distance between $E(4,0)$ and $D(-4,0), E D=\sqrt{[4-(-4)]^{2}+(0)^{2}}=\sqrt{8^{2}}=8$
Now, $\quad \frac{A B}{O E}=\frac{4}{8}=\frac{1}{2}, \frac{A C}{D F}=\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{1}{2}, \frac{B C}{E F}=\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{1}{2}$

$$
\therefore \quad \frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}
$$

Here, we see that sides of $\triangle A B C$ and $\triangle F D E$ are propotional.

Hence, both the triangles are
similar.
[by SSS rule]

Question 2:

The point $P(-4,2)$ lies on the line segment joining the points $A(-4,6)$ and $B(-4,-6)$.
Solution:

True

We plot all the points $P(-4,2), A(-4,6)$ and $B(-4,-6)$ on the graph paper,

From the figure, point $P(-4,2)$ lies on the line segment joining the points $A(-4,6)$ and $\mathrm{B}(-4,-6)$,

Question 3:

The points $(0,5),(0,-9)$ and $(3,6)$ are collinear.

Solution:

False

Here, $x_{1}=0, x_{2}=0, x_{3}=3$ and $y_{1}=5, y_{2}=-9, y_{3}=6$
\because Area of triangle $\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$

$$
\begin{aligned}
\therefore \quad \Delta & =\frac{1}{2}[0(-9-6)+0(6-5)+3(5+9)] \\
& =\frac{1}{2}(0+0+3 \times 14)=21 \neq 0
\end{aligned}
$$

If the area of triangle formed by the points $(0,5),(0-9)$ and $(3,6)$ is zero, then the points are collinear.
Hence, the points are non-collinear.

Question 4:

Point $P(0,2)$ is the point of intersection of y-axis and perpendicular bisector of line segment joining the points $A(-I, 1)$ and $B(3,3)$.

Solution:

False

We know that, the points lies on perpendicular bisector of the line segment joining the two
points is equidistant from these two points.

$$
\left.\begin{array}{ll}
\therefore & P A
\end{array}=\sqrt{[-4-(4)]^{2}+(6-2)^{2}}\right)
$$

So, the point P does not lie on the perpendicular bisctor of $A B$.
Alternate Method
Slope of the line segment joining the points $A(-1,1)$ and $B(3,3), m_{1}=\frac{3-1}{3 \div 1}=\frac{2}{4}=\frac{1}{2}$

$$
\left[\because m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]
$$

Since, the perpendicular bisector is perpendicular to the line segment, so its slope,

$$
m_{2}=-\frac{1}{\left(y_{2}\right)}=-2
$$

[by perpendicularity condition, $m_{1} m_{2}=-1$]
Also, the perpendicular bisector passing through the mid-point of the line segment joining the points $A(-1,1)$ and $B(3,3)$.

$$
\therefore \quad \text { Mid-point }=\left(\frac{-1+3}{2}, \frac{1+3}{2}\right)=(1,2)
$$

[since, mid-point of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left.\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]
$$

Now, equation of perpendicular bisector have slope (-2) and passes through the point $(1,2)$ is

$$
\begin{array}{rlrl}
& & (y-2) & =(-2)(x-1) \\
\Rightarrow & y-2 & =-2 x+2 \\
\Rightarrow & & 2 x+y & =4 \tag{i}
\end{array}
$$

[since, the equation of line is $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$]
If the perpendicular bisector cuts the Y-axis, then put $\boldsymbol{x}=0$ in Eq. (i), we get

$$
2 \times 0+y=4
$$

$\Rightarrow \quad y=4$
Hence, the required intersection point is $(0,4)$.

Question 5:

The points $A(3,1), B(12,-2)$ and $C(0,2)$ cannot be vertices of a triangle.

Solution:

True

Let

$$
A \equiv\left(x_{1}, y_{1}\right) \equiv(3,1), B \equiv\left(x_{2}, y_{2}\right) \equiv(12,-2)
$$

and

$$
C \equiv\left(x_{3}, y_{3}\right)=(0,2)
$$

$$
\therefore \quad \text { Area of } \triangle A B C \Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
$$

$$
=\frac{1}{2}[3-(2-2)+12(2-1)+0\{1-(-2)\}]
$$

$$
=\frac{1}{3}[3(-4)+12(1)+0]
$$

$$
=\frac{1}{3}(-12+12)=0
$$

$\because \quad$ Area of $\triangle A B C=0$
Hence, the points $A(3,1), B(12,-2)$ and $C(0,2)$ are collinear.
So, the points $A(3,1), B(12,-2)$ and $C(0,2)$ cannot be the vertices of a triangle.

Question 6:

The points $A(4,3), B(6,4), C(5,-6)$ and $D(-3,5)$ are vertices of a parallelogram.

Solution:

False

Now, distance between $A(4,3)$ and $B(6,4), A B=\sqrt{(6-4)^{2}+(4-3)^{2}}=\sqrt{2^{2}+1^{2}}=\sqrt{5}$ $\left[\because\right.$ distance between the points $\left(x_{1}, y_{1}\right)$ and $\left.\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]$
Distance between $B(6,4)$ and $C(5,-6), B C=\sqrt{(5-6)^{2}+(-6-4)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-1)^{2}+(-10)^{2}} \\
& =\sqrt{1+100}=\sqrt{101}
\end{aligned}
$$

Distance between $C(5,-6)$ and $D(-3,5), C D=\sqrt{(-3-5)^{2}+(5+6)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-8)^{2}+11^{2}} \\
& =\sqrt{64+121}=\sqrt{185}
\end{aligned}
$$

Distance between $D(-3,5)$ and $A(4,3), D A=\sqrt{(4+3)^{2}+(3-5)^{2}}$

$$
\begin{aligned}
& =\sqrt{7^{2}+(-2)^{2}} \\
& =\sqrt{49+4}=\sqrt{53}
\end{aligned}
$$

In parallelogram, opposite sides are equal. Here, we see that all sides $A B, B C, C D$ and DA are different.
Hence, given vertices are not the vertices of a parallelogram.

Question 7:

A circle has its centre at the origin and a point $P(5,0)$ lies on it. The point $Q(6,8)$ lies outside the circle.

Solution:

True

First, we draw a circle and a point from the given information

Now, distance between origin i.e., $O(0,0)$ and $P(5,0), O P=\sqrt{(5-0)^{2}+(0-0)^{2}}$

$$
\left[\because \text { Distance between two points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]
$$

$$
=\sqrt{5^{2}+0^{2}}=5=\text { Radius of circle and distance between origin } O(0,0)
$$

and $Q(6$
$8), O Q=\sqrt{(6-0)^{2}+(8-0)^{2}}=\sqrt{6^{2}+8^{2}}=\sqrt{36+64}=\sqrt{100}=10$
We know that, if the distance of any point from the centre is less than/equal to/ more than the radius, then the point is inside/on/outside the circle, respectively.
Here, we see that, OQ > OP
Hence, it is true that point $Q(6,8)$, lies outside the circle.

Question 8:

The point $A(2,7)$ lies on the perpendicular bisector of the line segment joining the points $P(5,-3)$ and $Q(0,-4)$.

Solution:

False

If $A(2,7)$ lies on perpendicular bisector of $P(6,5)$ and $Q(0,-4)$, then $A P=A Q$

$$
\begin{aligned}
\therefore \quad A P & =\sqrt{(6-2)^{2}+(5-7)^{2}} \\
& =\sqrt{(4)^{2}+(-2)^{2}} \\
& =\sqrt{16+4}=\sqrt{20} \\
\text { and } \quad A & =\sqrt{(0-2)^{2}+(-4-7)^{2}} \\
& =\sqrt{(-2)^{2}+(-11)^{2}} \\
& =\sqrt{4+121}=\sqrt{125}
\end{aligned}
$$

So, A does not lies on the perpendicular bisector of $P Q$.

Alternate Method

If the point $A(2,7)$ lies on the perpendicular bisector of the line segment, then the point A satisfy the equation of perpendicular bisector.
Now, we find the equation of perpendicular bisector. For this, we find the slope of perpendicular bisector.
\therefore Slope of perpendicular bisector $=\frac{-1}{\text { Slope of line segment joining }}$
the points $(5,-3)$ and $(0,-4)$

$$
=\frac{-1}{\frac{-4-(-3)}{0-5}}=5 \quad\left[\because \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]
$$

[since, perpendicular bisector is perpendicular to the line segment, so its slopes have the condition, $\left.m_{1} \cdot m_{2}=-1\right]$
Since, the perpendicular bisector passes through the mid-point of the line segment joining

$$
\begin{aligned}
& \text { the points }(5,-3) \text { and }(0,-4) \text {. } \\
& \therefore \quad \text { Mid-point of } P Q=\left(\frac{5+0}{2}, \frac{-3-4}{2}\right)=\left(\frac{5}{2}, \frac{-7}{2}\right)
\end{aligned}
$$

So, the equation of perpendicular bisector having slope $\frac{1}{3}$ and passes through the mid-point $\left(\frac{5}{2}, \frac{-7}{2}\right)$ is,

$$
\left(y+\frac{7}{2}\right)=5\left(x-\frac{5}{2}\right)
$$

[\because equation of line is $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$]

$$
\begin{array}{rr}
\Rightarrow & 2 y+7=10 x-25 \\
\Rightarrow & 10 x-2 y-32=0 \\
\Rightarrow & 10 x-2 y=32 \\
\Rightarrow & 5 x-y=16 \tag{i}
\end{array}
$$

Now, check whether the point $A(2,7)$ lie on the Eq. (i) or not.

$$
5 \times 2-7=10-7=3 \neq 16
$$

Hence, the point $\mathrm{A}(2,7)$ does not lie on the perpendicular bisector of the line segment.

Question 9:

The point $P(5,-3)$ is one of the two points of trisection of line segment joining the points $A(7,-2)$ and $B(1,-5)$.

Solution:

True

Let $P(5,-3)$ divides the line segment joining the points $A(7,-2)$ and $B(1,-5)$ in the ratio k : 1 internally.
By section formula, the coordinate of point P will be

$$
\begin{array}{ll}
& \left(\frac{k(1)+(1)(7)}{k+1}, \frac{k(-5)+1(-2)}{k+1}\right) \\
\text { i.e., } & \left(\frac{k+7}{k+1}, \frac{-5 k-2}{k+1}\right) \\
\text { Now, } & (5,-3)=\left(\frac{k+7}{k+1}, \frac{-5 k-2}{k+1}\right) \\
\Rightarrow & \frac{k+7}{k+1}=5 \\
\Rightarrow & k+7=5 k+5 \\
\Rightarrow & -4 k=-2 \\
\therefore & k=\frac{1}{2}
\end{array}
$$

So the point P divides the line segment $A B$ in ratio 1:2. Hence, point P in the point of trisection of $A B$.

Question 10:

The points $A(-6,10), B(-4,6)$ and $C(3,-8)$ are collinear such that
$A B=\overline{9} A C$.

Solution:

True

If the area of triangle formed by the points $\left(x_{1}, y_{2}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is zero, then the points are collinear,

So, given points are collinear.
Now, distance between $A(-6,10)$ and $B(-4,6), A B=\sqrt{(-4+6)^{2}+(6-10)^{2}}$

$$
=\sqrt{2^{2}+4^{2}}=\sqrt{4+16}=\sqrt{20}=2 \sqrt{5}
$$

$$
\left[\because \text { distance between the points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]
$$

Distance between $A(-6,10)$ and $C(3,-8), A C=\sqrt{(3+6)^{2}+(-8-10)^{2}}$

$$
\begin{aligned}
& =\sqrt{9^{2}+18^{2}}=\sqrt{81+324} \\
& =\sqrt{405}=\sqrt{81 \times 5}=9 \sqrt{5}
\end{aligned}
$$

$$
\therefore \quad A B=\frac{2}{9} A C
$$

which is the required relation.

Question 11:

The point $P(-2,4)$ lies on a circle of radius 6 and centre $(3,5)$.

Solution:

False

If the distance between the centre and any point is equal to the radius, then we say that point lie on the circle.
Now, distance between P $(-2,4)$ and centre $(3,5)$

$$
\begin{aligned}
& =\sqrt{(3+2)^{2}+(5-4)^{2}} \\
& =\sqrt{5^{2}+1^{2}} \\
& =\sqrt{25+1}=\sqrt{26}
\end{aligned}
$$

$$
\left[\because \text { distance between the points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]
$$

which is not equal to the radius of the circle.
Hence, the point $P(-2,4)$ does not lies on the circle.

Question 12:

The points $A(-1,-2), B(4,3), C(2,5)$ and $D(-3,0)$ in that order form a rectangle.
Solution:

True

$$
\begin{aligned}
& \because \quad \text { Area of triangle }=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& \text { Here, } x_{1}=-6, x_{2}=-4, x_{3}=3 \text { and } y_{1}=10, y_{2}=6, y_{3}=-8 \\
& \therefore \quad \text { Area of } \triangle A B C=\frac{1}{2}[-6\{6-(-8)\}+(-4)(-8-10)+3(10-6)] \\
& =\frac{1}{2}[-6(14)+(-4)(-18)+3(4)] \\
& =\frac{1}{2}(-84+72+12)=0
\end{aligned}
$$

Distance between $A(-1,-2)$ and $B(4,3)$,

$$
\begin{aligned}
A B & =\sqrt{(4+1)^{2}+(3+2)^{2}} \\
& =\sqrt{5^{2}+5^{2}}=\sqrt{25+25}=5 \sqrt{2}
\end{aligned}
$$

Distance between $C(2,5)$ and $D(-3,0)$,

$$
\begin{aligned}
C D & =\sqrt{(-3-2)^{2}+(0-5)^{2}} \\
& =\sqrt{(-5)^{2}+(-5)^{2}}
\end{aligned}
$$

$$
\left[\because \text { distance between the points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]
$$

Distance between $A(-1,-2)$ and $D(-3,0)$.

$$
A D=\sqrt{(-3+1)^{2}+(0+2)^{2}}=\sqrt{(-2)^{2}+2^{2}}=\sqrt{4+4}=2 \sqrt{2}
$$

and distance between $B(4,3)$ and $C(2,5), B C=\sqrt{(4-2)^{2}+(3-5)^{2}}$

$$
=\sqrt{2^{2}+(-2)^{2}}=\sqrt{4+4}=2 \sqrt{2}
$$

We know that, in a rectangle, opposite sides and equal diagonals are equal and bisect each other.
Since, $\quad A B=C D$ and $A D=B C$
Also, distance between $A(-1,-2)$ and $C(2,5), A C=\sqrt{(2+1)^{2}+(5+2)^{2}}$

$$
=\sqrt{3^{2}+7^{2}}=\sqrt{9+49}=\sqrt{58}
$$

and distance between $D(-3,0)$ and $B(4,3), D B=\sqrt{(4+3)^{2}+(3-0)^{2}}$

$$
=\sqrt{7^{2}+3^{2}}=\sqrt{49+9}=\sqrt{58}
$$

Since, diagonals $A C$ and $B D$ are equal.
Hence, the points $A(-1,-2), B(4,3), C(2,5)$ and $D(-30)$ form a rectangle.

Exercise 7.3 Short Answer Type Questions

Question 1:

Name the type of triangle formed by the points $A(-5,6), B(-4,-2)$ and $C(7,5)$.

Solution:

To find the type of triangle, first we determine the length of all three sides and see whatever condition of triangle is satisfy by these sides.
Now, using distance formula between two points,

$$
\begin{aligned}
A B & =\sqrt{(-4+5)^{2}+(-2-6)^{2}} \\
& =\sqrt{(1)^{2}+(-8)^{2}} \\
& =\sqrt{1+64}=\sqrt{65} \quad \quad\left[\because d=\sqrt{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)^{2}}\right] \\
B C & =\sqrt{(7+4)^{2}+(5+2)^{2}}=\sqrt{(11)^{2}+(7)^{2}} \\
& =\sqrt{121+49}=\sqrt{170} \\
C A & =\sqrt{(-5-7)^{2}+(6-5)^{2}}=\sqrt{(-12)^{2}+(1)^{2}} \\
& =\sqrt{144+1}=\sqrt{145}
\end{aligned}
$$

and

We see that,
$A B \neq B C \neq C A$ and not hold the condition of Pythagoras in a $\triangle A B C$.
i.e., $\quad(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}$

Hence, the required triangle is scalene because all of its sides are not equal i.e., different to each other.

Question 2:

Find the points on the X-axis which are at a distance of $2 \sqrt{ } 5$ from the point (7, -4).
How many such points are there?

Solution:

We know that, every point on the X -axis in the form $(\mathrm{x}, 0)$. Let $\mathrm{P}(\mathrm{x}, 0)$ the point on the X-axis
have $2 \sqrt{ } 5$ distance from the point $Q(7,-4)$.
By given condition

$$
P Q=2 \sqrt{5}
$$

$$
\left[\because \text { distance formula }=\sqrt{\left.\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]}\right.
$$

$$
\Rightarrow \quad(P Q)^{2}=4 \times 5
$$

$$
\Rightarrow \quad(x-7)^{2}+(0+4)^{2}=20
$$

$$
\Rightarrow \quad x^{2}+49-14 x+16=20
$$

$$
\Rightarrow \quad x^{2}-14 x+65-20=0
$$

$$
\Rightarrow \quad x^{2}-14 x+45=0
$$

$$
\Rightarrow \quad x^{2}-9 x-5 x+45=0
$$

$$
\Rightarrow \quad x(x-9)-5(x-9)=0
$$

$$
\Rightarrow \quad(x-9)(x-5)=0
$$

.

$$
x=5.9
$$

Hence, there are two points lies on the axis, which are $(5,0)$ and $(9,0)$, have 2 V 5 distance from the point $(7,-4)$.

Question 3:

What type of quadrilateral do the points $A(2,-2), B(7,3) C(11,-1)$ and $D(6,-6)$ taken in that order form?

Solution:

To find the type of quadrilateral, we find the length of all four sides as well as two diagonals and see whatever condition of quadrilateral is satisfy by these sides as well as diagonals. Now, using distance formula between two points,

$$
\text { sides, } \begin{aligned}
A B & =\sqrt{(7-2)^{2}+(3+2)^{2}} \\
& =\sqrt{(5)^{2}+(5)^{2}}=\sqrt{25+25} \\
& =\sqrt{50}=5 \sqrt{2}
\end{aligned}
$$

$$
\left[\text { since, distance between two points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)^{2}}\right]
$$

and
and

$$
\begin{aligned}
B C & =\sqrt{(11-7)^{2}+(-1-3)^{2}}=\sqrt{(4)^{2}+(-4)^{2}} \\
& =\sqrt{16+16}=\sqrt{32}=4 \sqrt{2} \\
C D & =\sqrt{(6-11)^{2}+(-6+1)^{2}} \\
& =\sqrt{(-5)^{2}+(-5)^{2}} \\
& =\sqrt{25+25}=\sqrt{50}=5 \sqrt{2} \\
D A & =\sqrt{(2-6)^{2}+(-2+6)^{2}} \quad B(6,-6) \\
& =\sqrt{(-4)^{2}+(4)^{2}}=\sqrt{16+16} \\
& =\sqrt{32}=4 \sqrt{2}
\end{aligned}
$$

$$
\text { Diagonals, } A C=\sqrt{(11-2)^{2}+(-1+2)^{2}}
$$

$$
=\sqrt{(9)^{2}+(1)^{2}}=\sqrt{81+1}=\sqrt{82}
$$

$$
\begin{aligned}
B D & =\sqrt{(6-7)^{2}+(-6-3)^{2}} \\
& =\sqrt{(-1)^{2}+(-9)^{2}} \\
& =\sqrt{1+81}=\sqrt{82}
\end{aligned}
$$

Here, we see that the sides $A B=C D$ and $B C=D A$
Also, diagonals are equal i.e., $A C=B D$
which shows the quadrilateral is a rectangle.

Question 4:

Find the value of a, if the distance between the points $A(-3,-14)$ and $B(a,-5)$ is 9 units.

Solution:

According to the question,

$$
\begin{aligned}
& \text { Distance between } A(-3,-14) \text { and } 8(a,-5), A B=9 \\
& \qquad\left[\because \text { distance between two points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right), d=\sqrt{\left.\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)^{2}\right]}\right. \\
& \Rightarrow \\
& \Rightarrow \quad \sqrt{(a+3)^{2}+(-5+14)^{2}}=9 \\
& \Rightarrow \sqrt{(a+3)^{2}+(9)^{2}}=9
\end{aligned}
$$

On squaring both the sides, we get

$$
\begin{aligned}
(a+3)^{2}+81 & =81 \\
(a+3)^{2} & =0 \Rightarrow a=-3
\end{aligned}
$$

Hence, the required value of a is -3 .

Question 5:

Find a point which is equidistant from the points $A(-5,4)$ and $B(-1,6)$. How many
such points are there?

Solution:

Let $P(h, k)$ be the point which is equidistant from the points $A(-5,4)$ and $B(-1,6)$.

$$
\begin{array}{lcc}
\therefore & P A=P B \quad & \left.\quad \because \because \text { by distance formula, distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right] \\
\Rightarrow & (P A)^{2}=(P B)^{2} & (-5-h)^{2}+(4-k)^{2}=(-1-h)^{2}+(6-k)^{2} \\
\Rightarrow & 25+h^{2}+10 h+16+k^{2}-8 k=1+h^{2}+2 h+36+k^{2}-12 k \\
\Rightarrow & 25+10 h+16-8 k=1+2 h+36-12 k \\
\Rightarrow & 8 h+4 k+41-37=0 \\
\Rightarrow & 8 h+4 k+4=0 \\
\Rightarrow & 2 h+k+1=0 \\
\Rightarrow & \text { Mid-point of } A B=\left(\frac{-5-1}{2}, \frac{4+6}{2}\right)=(-3,5) \tag{i}\\
& & \quad\left[\because \text { mid-point }=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]
\end{array}
$$

At point $(-3,5)$, from Eq. (i),

$$
\begin{aligned}
2 h+k & =2(-3)+5 \\
& =-6+5=-1 \\
\Rightarrow \quad 2 h+k+1 & =0
\end{aligned}
$$

So, the mid-point of $A B$ satisfy the Eq. (i). Hence, infinite number of points, in fact all points which are solution of the equation $2 h+k+1=0$, are equidistant from the points A and B.
Replacing h, k by x, y in above equation, we have $2 \mathrm{x}+\mathrm{y}+1=0$

Question 6:

Find the coordinates of the point Q on the x-axis which lies on the perpendicular bisector of the line segment joining the points $A(-5,-2)$ and $B(4,-2)$. Name the type of triangle formed by the point Q, A and B.

Solution:

Firstly, we plot the points of the line segment on the paper and join them.

We know that, the perpendicular bisector of the line segment $A B$ bisect the segment $A B$, i.e.,perpendicular bisector of the line segment $A B$ passes through the mid-point of $A B$.

$$
\begin{array}{ll}
\therefore & \text { Mid-point of } A B=\left(\frac{-5+4}{2}, \frac{-2-2}{2}\right) \\
\Rightarrow & R=\left(-\frac{1}{2},-2\right)
\end{array}
$$

[\because mid-point of a line segment passes through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left.\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]
$$

Now, we draw a straight line on paper passes through the mid-point R. We see that perpendicular bisector cuts the X-axis at the point $Q\left(-\frac{1}{2}, 0\right)$.
Hence, the required coordinates of $Q \equiv\left(-\frac{1}{2}, 0\right)$

Alternate Method

(i) To find the coordinates of the point of 0 on the X -axis. We find the equation of perpendicular bisector of the line segment AS.
Now, slope of line segment $A B$,

Let

$$
m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-(-2)}{4-(-5)}=\frac{-2+2}{4+5}=\frac{0}{9}
$$

$\Rightarrow \quad m_{1}=0$
Let the slope of perpendicular bisector of line segment is m_{2}.
Since, perpendicular bisector is perpendicular to the line segment $A E$.
By perpendicularity condition of two lines,

$$
\Rightarrow \quad \begin{aligned}
m_{1}: m_{2} & =-1 \\
m_{2} & =\frac{-1}{m_{1}}=\frac{-1}{0} \\
\Rightarrow & m_{2}
\end{aligned}=\infty \quad .
$$

Also, we know that, the perpendicular bisector is always passes through the mid-point of

$$
\begin{aligned}
& \text { the line segment. } \\
& \left.\left.\qquad \begin{array}{rl}
\therefore \\
& \text { Mid-point }=\left(\frac{-5+4}{2}, \frac{-2-2}{2}\right)= \\
& {\left[\because \text { mid-point }=\left(\frac{-1}{2},-2\right)\right.} \\
2
\end{array}, \frac{x_{1}+x_{2}}{2}\right)\right]
\end{aligned}
$$

To find the equation of perpendicular bisector of line segment, we find the slope and a point through which perpendicular bisector is pass.
Now, equation of perpendicular bisector having slope ∞ and passing through the point $\left(\frac{-1}{2},-2\right)$ is,

$$
\begin{array}{ll}
& (y+2)=\infty\left(x+\frac{1}{2}\right) \\
\Rightarrow & \frac{y+2}{x+\frac{1}{2}} \\
\Rightarrow & \infty=\frac{1}{0} \Rightarrow x+\frac{1}{2}=0 \\
\therefore & x=\frac{-1}{2}
\end{array}
$$

So, the coordinates of the point Q is $\left(\frac{-1}{2}, 0\right)$ on the X-axis which lies on the perpendicular bisector of the line segment joining the point $A B$.
To know the type of triangle formed by the points Q, A and B. We find the length of all three sides and see whatever condition of triangle is satisfy by these sides.
Now, using distance formula between two points,

$$
A B=\sqrt{(4+5)^{2}+(-2+2)^{2}}=\sqrt{(9)^{2}+0}=9
$$

[\because distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)^{2}}$]

$$
\begin{aligned}
B Q & =\sqrt{\left(\frac{-1}{2}-4\right)^{2}+(0+2)^{2}} \\
& =\sqrt{\left(\frac{-9}{2}\right)^{2}+(2)^{2}}=\sqrt{\frac{81}{4}+4}=\sqrt{\frac{97}{4}}=\sqrt{\frac{97}{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
Q A & =\sqrt{\left(-5+\frac{1}{2}\right)+(-2-0)^{2}} \\
& =\sqrt{\left(\frac{-9}{2}\right)^{2}+(2)^{2}} \\
& =\sqrt{\frac{81}{4}+4}=\sqrt{\frac{97}{4}}=\sqrt{\frac{97}{2}}
\end{aligned}
$$

We see that, $B Q=Q A \neq A B$

which shows that the triangle formed by the points Q, A and 6 is an isosceles.

Question 7:

Find the value of m, if the points $(5,1),(-2,-3)$ and $(8,2 m)$ are collinear.

Solution:

Let $A \equiv\left(x_{1}, y_{1}\right) s(5,1), B=\left(x_{2}, y_{2}\right)=(-2,-3), C s\left(x_{3}, y_{3}\right)=(8,2 m)$
Since, the points $A \equiv(5,1), B \equiv(-2,-3)$ and $C \equiv(8,2 m)$ are collinear.

$$
\begin{array}{lr}
\therefore & \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
\Rightarrow & \frac{1}{2}[5(-3-2 m)+(-2)(2 m-1)+8\{1-(-3)\}]=0 \\
\Rightarrow & \frac{1}{2}(-15-10 m-4 m+2+32)=0 \\
\Rightarrow & \frac{1}{2}(-14 m+19)=0 \Rightarrow m=\frac{19}{14}
\end{array}
$$

Hence, the required value of m is $\frac{19}{14}$.

Question 8:

If the point $A(2,-4)$ is equidistant from $P(3,8)$ and $Q(-10, y)$, then find the value of y. Also, find distance PQ.

Solution:

According to the question,
A $(2,-4)$ is equidistant from $P(3,8)=0(-10, y)$ is equidistant from $A(2,-4)$

$$
\begin{array}{ll}
\text { i.e., } & P A=Q A \\
\Rightarrow & \sqrt{(2-3)^{2}+(-4-8)^{2}}=\sqrt{(2+10)^{2}+(-4-y)^{2}} \\
& {\left[\because \text { distance between two points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right), d=\sqrt{\left.\left(x_{2}-x_{1}\right)+\left(y_{2}-y_{1}\right)^{2}\right]}\right.} \\
\Rightarrow & \sqrt{(-1)^{2}+(-12)^{2}}=\sqrt{(12)^{2}+(4+y)^{2}} \\
\Rightarrow & \sqrt{1+144}=\sqrt{144+16+y^{2}+8 y} \\
\Rightarrow & \sqrt{145}=\sqrt{160+y^{2}+8 y}
\end{array}
$$

On squaring both the sides, we get

$$
\begin{array}{rr}
& 145=160+y^{2}+8 y \\
\Rightarrow & y^{2}+8 y+160-145=0 \\
\Rightarrow & y^{2}+8 y+15=0 \\
\Rightarrow & y^{2}+5 y+3 y+15=0 \\
\Rightarrow & y(y+5)+3(y+5)=0 \\
& (y+5)(y+3)=0
\end{array}
$$

If $y+5=0$, then $y=-5$
If $y+3=0$, then $y=-3$
$\therefore \quad y=-3,-5$
Now, distance between $P(3,8)$ and $Q(-10, y)$,

$$
\begin{aligned}
P Q & =\sqrt{(-10-3)^{2}+(y-8)^{2}} & \quad \text { [putting } y=-3 \text {] } \\
& =\sqrt{(-13)^{2}+(-3-8)^{2}} & \\
& =\sqrt{169+121}=\sqrt{290} &
\end{aligned}
$$

Again, distance between $P(3,8)$ and $(-10, y), P Q=\sqrt{(-13)^{2}+(-5-8)^{2}}$. $\quad[$ putting $y=-5$]

$$
=\sqrt{169+169}=\sqrt{338}
$$

Hence, the values of y are $-3,-5$ and corresponding values of $P Q$ are $\sqrt{290}$ and $\sqrt{ } 338=1342$, respectively.

Question 9:

Find the area of the triangle whose vertices are $(-8,4),(-6,6)$ and $(-3,9)$.

Solution:

Given that, the vertices of triangles
Let

$$
\begin{array}{r}
\left(x_{1}, y_{1}\right) \rightarrow(-8,4) \\
\left(x_{2}, y_{2}\right) \rightarrow(-6,6) \\
\left(x_{3}, y_{3}\right) \rightarrow(-3,9)
\end{array}
$$

and
We know that, the area of triangle with vertices $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}+\left(y_{1}-y_{2}\right)\right] \\
\therefore \quad & =\frac{1}{2}[-8(6-9)-6(9-4)+(-3)(4-6)] \\
& =\frac{1}{2}[-8(-3)-6(5)-3(-2)]=\frac{1}{2}(24-30+6) \\
& =\frac{1}{2}(30-30)=\frac{1}{2}(0)=0
\end{aligned}
$$

Hence, the required area of triangle is 0 .

Question 10:

In what ratio does the X-axis divide the line segment joining the points $(-4,-6)$ and $(-1,7)$? Find the coordinates of the points of division.

Solution:

Let the required ratio be $\lambda: 1$. So, the coordinates of the point M of division $A(-4,-$ 6) and $\mathrm{B}(-1,7)$ are

$$
\left\{\frac{\lambda x_{2}+1 \cdot x_{1}}{\lambda+1}, \frac{\lambda y_{2}+1 \cdot y_{1}}{\lambda+1}\right\}
$$

Here, $x_{1}=-4, x_{2}=-1$ and $y_{1}=-6, y_{2}=7$
i.e.,

$$
\left(\frac{\lambda(-1)+1(-4)}{\lambda+1}, \frac{\lambda(7)+1 \cdot(-6)}{\lambda+1}\right)=\left(\frac{-\lambda-4}{\lambda+1}, \frac{7 \lambda-6}{\lambda+1}\right)
$$

But according to the question, line segment joining $A(-4,-6)$ and $B(-1,7)$ is divided by the X-axis. So, y-coordinate must be zero.

$$
\begin{array}{ll}
\therefore & \frac{7 \lambda-6}{\lambda+1} \Rightarrow 7 \lambda-6=0 \\
\therefore & \lambda=\frac{6}{7}
\end{array}
$$

So, the required ratio is $6: 7$ and the point of division M is $\left\{\frac{-\frac{6}{7}-4}{\frac{6}{7}+1}, \frac{7 \times \frac{6}{7}-6}{\frac{6}{7}+1}\right\}$ i.e., $\quad\left(\frac{-34}{\frac{7}{13}}, \frac{6-6}{\frac{13}{7}}\right)$ i.e., $\left(\frac{-34}{13}, 0\right)$.

Hence, the required point of division is $\left(\frac{-34}{13}, 0\right)$.

Question 11:

Find the ratio in which the point $P\left(\frac{3}{4}, \frac{5}{12}\right)$ divides the line segment joinnig the points A ($\frac{1}{2}, \frac{3}{2}$) and $B(2,5)$.

Solution:

Let $\mathrm{P}\left(\frac{3}{4}, \frac{5}{12}\right)$ divide AB internally in the ratio m:n using the section formula, we get

$$
\left(\frac{3}{4}, \frac{5}{12}\right)=\left(\frac{2 m-\frac{n}{2}}{m+n}, \frac{-5 m+\frac{3}{2} n}{m+n}\right)
$$

$[\because$ internal section formula, the coordinates of point P divides the line segment joining the point $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $m_{1}: m_{2}$ internally is $\left.\left(\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{1}+m_{2}}, \frac{m_{2} y_{1}+m_{1} y_{2}}{m_{1}+m_{2}}\right)\right]$

On equating, we get

$$
\begin{aligned}
& \frac{3}{4}=\frac{2 m-\frac{n}{2}}{m+n} \quad \text { and } \quad \frac{5}{12}=\frac{-5 m+\frac{3}{2} n}{m+n} \\
& \Rightarrow \quad \frac{3}{4}=\frac{4 m-n}{2(m+n)} \quad \text { and } \quad \frac{5}{12}=\frac{-10 m+3 n}{2(m+n)} \\
& \Rightarrow \quad \frac{3}{2}=\frac{4 m-n}{m+n} \quad \text { and } \quad \frac{5}{6}=\frac{-10 m+3 n}{m+n} \\
& \Rightarrow \quad 3 m+3 n=8 m-2 n \text { and } s^{2} m+5 n=-60 m+18 n \\
& \Rightarrow \quad 5 n-5 m=0 \text { and } 65 m-13 n=0 \\
& \Rightarrow \quad n=m \text { and } 13(5 m-n)=0 \\
& \Rightarrow \quad n=m \text { and } 5 m-n=0 \\
& \text { Since, } \quad m=n \text { does not satisfy. } \\
& \therefore \quad 5 m-n=0 \\
& \Rightarrow \quad 5 m=n \\
& \therefore \quad \frac{m}{n}=\frac{1}{5}
\end{aligned}
$$

Hence, the required ratio is $1: 5$.

Question 12:

If $P(9 a-2,-b)$ divides line segment joining $A(3 a+1,-3)$ and $B(8 a, 5)$ in the ratio 3 :
1 , then find the values of a and b.

Solution:

Let $P(9 a-2,-b)$ divides AS internally in the ratio 3:1.
By section formula,

$$
9 a-2=\frac{3(8 a)+1(3 a+1)}{3+1}
$$

$[\because$ internal section formula, the coordinates of point P divides the line segment joining 1 point $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the ratio $m_{1}: m_{2}$ internally is $\left.\left(\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{1}+m_{2}}, \frac{m_{2} y_{1}+m_{1} y_{2}}{m_{1}+m_{2}}\right)\right]$

$$
\begin{aligned}
& \text { and } \\
& \Rightarrow \quad 9 a-2=\frac{24 a+3 a+1}{4} \\
& \text { and } \\
& -b=\frac{3(5)+1(-3)}{3+1} \\
& \text {. } 4 \\
& \Rightarrow \quad 9 a-2=\frac{27 a+1}{4} \\
& \text { and } \\
& -b=\frac{12}{4} \\
& \Rightarrow \quad 36 a-8=27 a+1 \\
& \text { and } \\
& b=-3 \\
& \Rightarrow \quad 36 a-27 a-8-1=0 \\
& \Rightarrow \quad 9 a-9=0 \\
& \therefore \quad a=1
\end{aligned}
$$

Hence, the required values of a and b are 1 and -3 .

Question 13:

If (a, b) is the mid-point of the line segment joining the points $A(10,-6), B(k, 4)$ and $a-2 b=18$, then find the value of k and the distance $A B$.
Solution:
Since, (a, b) is the mid-point of line segment $A B$.

$$
\therefore \quad(a, b)=\left(\frac{10+k}{2}, \frac{-6+4}{2}\right)
$$

$\left[\right.$ since, mid-point of a line segment having points $\left(x_{1}, y_{1}\right)$ and $\left.\left(x_{2}, y_{2}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]$

$$
\Rightarrow \quad(a, b)=\left(\frac{10+k}{2},-1\right)
$$

Now, equating coordinates on both sides, we get

$$
\begin{equation*}
\therefore \quad a=\frac{10+k}{2} \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
b=-1 \tag{ii}
\end{equation*}
$$

Given,

$$
a-2 b=18
$$

From Eq. (ii),

$$
a-2(-1)=18
$$

\Rightarrow

$$
a+2=18 \Rightarrow a=16
$$

From Eq. (i),

$$
16=\frac{10+k}{2}
$$

$\Rightarrow \quad 32=10+k \Rightarrow k=22$
Hence, the required value of k is 22 .

$$
\begin{array}{ll}
\Rightarrow & k=22 \\
\therefore & A \equiv(10,-6), B \equiv(22,4)
\end{array}
$$

Now, distance between $A(10,-6)$ and $B(22,4)$,

$$
A B=\sqrt{(22-10)^{2}+(4+6)^{2}}
$$

c [\because distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right), d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$]

$$
\begin{aligned}
& =\sqrt{(12)^{2}+(10)^{2}}=\sqrt{144+100} \\
& =\sqrt{244}=2 \sqrt{61}
\end{aligned}
$$

Hence, the required distance of $A B$ is $2 \sqrt{ } 61$.

Question 14:

If the centre of a circle is ($2 a, a-7$), then Find the values of a, if the circle passes through the point $(11,-9)$ and has diameter $10 \sqrt{ } 2$ units.

Solution:

By given condition,

Distance between the centre $C(2 a, a-7)$ and the point $P(11,-9)$, which lie on the circle $=$ Radius of circle
$\therefore \quad$ Radius of circle $=\sqrt{(11-2 a)^{2}+(-9-a+7)^{2}}$
[\because distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$]
Given that, length of diameter $=10 \sqrt{2}$
$\therefore \quad$ Length of radius $=\frac{\text { Length of diameter }}{2}$

$$
=\frac{10 \sqrt{2}}{2}=5 \sqrt{2}
$$

Put this value in Eq. (i), we get

$$
5 \sqrt{2}=\sqrt{(11-2 a)^{2}+(-2-a)^{2}}
$$

Squaring on both sides, we get

$$
\begin{array}{rlrl}
& & 50 & =(11-2 a)^{2}+(2+a)^{2} \\
\Rightarrow & 50 & =121+4 a^{2}-44 a+4+a^{2}+4 a \\
\Rightarrow & & 5 a^{2}-40 a+75 & =0 \\
\Rightarrow & & a^{2}-8 a+15 & =0 \\
\Rightarrow & & a^{2}-5 a-3 a+15 & =0 \\
\Rightarrow & a(a-5)-3(a-5) & =0 \\
\Rightarrow & & (a-5)(a-3) & =0 \\
\therefore & & a & =3,5
\end{array}
$$

[by factorisation method]

Hence, the required values of a are 5 and 3 .

Question 15:

The line segment joining the points $A(3,2)$ and $B(5,1)$ is divided at the point P in the ratio 1:2 and it lies on the line
$3 x-18 y+k=0$. Find the value of k.

Solution:

Given that, the line segment joining the points $4(3,2)$ and $6(5,1)$ is divided at the point P in the ratio $1: 2$.

$$
\begin{aligned}
\therefore \quad \text { Coordinate of point } P & \equiv\left\{\frac{5(1)+3(2)}{1+2}, \frac{1(1)+2(2)}{1+2}\right\} \\
& \equiv\left(\frac{5+6}{3}, \frac{1+4}{3}\right) \equiv\left(\frac{11}{3}, \frac{5}{3}\right)
\end{aligned}
$$

$$
\left[\because \text { by section formula for internal ratio } \equiv\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)\right]
$$

But the point $P\left(\frac{11}{3}, \frac{5}{3}\right)$ lies on the line $3 x-18 y+k=0$.

$$
\begin{aligned}
\therefore & 3\left(\frac{11}{3}\right)-18\left(\frac{5}{3}\right)+k & =0 \\
\Rightarrow & 11-30+k & =0 \\
\Rightarrow & k-19 & =0 \Rightarrow k=19
\end{aligned}
$$

Hence, the required value of k is 19 .

Question 16:

If $D\left(\frac{-1}{2} \frac{5}{2}\right) E(7,3)$ and $F\left(\frac{7}{2}, \frac{7}{2}\right)$ are the mid-points of sides of $\triangle A B C$, then find the area of the $\triangle A B C$.
Solution:

Let $A \equiv\left(x_{1}, y_{1}\right), B \equiv\left(x_{2}, y_{2}\right)$ and $C \equiv\left(x_{3}, y_{3}\right)$ are the vertices of the $\triangle A B C$.
Gives, $D\left(-\frac{1}{2}, \frac{5}{2}\right), E(7,3)$ and $F\left(\frac{7}{2}, \frac{7}{2}\right)$ be the mid-points of the sides $B C, C A$ and $A B$, respectively.
Since, $D\left(-\frac{1}{2}, \frac{5}{2}\right)$ is the mid-point of $B C$.
$\therefore \quad \frac{x_{2}+x_{3}}{2}=-\frac{1}{2}$
$\left[\right.$ since, mid-point of a line segment having points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left.\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]$
and

$$
\begin{align*}
& \frac{y_{2}+y_{3}}{2}=\frac{5}{2} \\
& x_{2}+x_{3}=-1 \\
& y_{2}+y_{3}=5 \tag{ii}
\end{align*}
$$

As $E(7,3)$ is the mid-point of $C A$.
$\therefore \quad \frac{x_{3}+x_{1}}{2}=7$
and
$\frac{y_{3}+y_{1}}{2}=3$
\Rightarrow

$$
\begin{gather*}
x_{3}+x_{1}=14 \tag{iii}\\
y_{3}+y_{1}=6 \tag{iv}
\end{gather*}
$$

Also, $F\left(\frac{7}{2}, \frac{7}{2}\right)$ is the mid-point of $A B$.
$\therefore \quad \frac{x_{1}+x_{2}}{2}=\frac{7}{2}$
and

$$
\frac{y_{1}+y_{2}}{2}=\frac{7}{2}
$$

$$
\begin{equation*}
x_{1}+x_{2}=7 \tag{v}
\end{equation*}
$$

$$
\begin{equation*}
y_{1}+y_{2}=7 \tag{vi}
\end{equation*}
$$

and $\quad y_{1}+y_{2}=7$
On adding Eqs. (i), (iii) and (v), we get

$$
\begin{align*}
2\left(x_{1}+x_{2}+x_{3}\right) & =20 \\
x_{1}+x_{2}+x_{3} & =10 \tag{vii}
\end{align*}
$$

$\overrightarrow{\text { On subtracting Eqs. (i), (iii) and (v) from Eq. (vii) respectively, we get }}$

$$
x_{1}=11, x_{2}=-4, x_{3}=3
$$

On adding Eqs. (ii), (iv) and (vi), we get

$$
\begin{align*}
& 2\left(y_{1}+y_{2}+y_{3}\right) & =18 \\
\Rightarrow & y_{1}+y_{2}+y_{3} & =9
\end{align*}
$$

On subtracting Eqs. (ii), (iv) and (vi) from Eq. (viii) respectively, we get

$$
y_{1}=4, y_{2}=3, y_{3}=2
$$

Hence, the vertices of $\triangle A B C$ are $A(11,4), B(-4,3)$ and $C(3,2)$.

$$
\begin{array}{ll}
\because \quad \text { Area of } \triangle A B C & =\Delta=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
\therefore \quad \Delta & =\frac{1}{2}[11(3-2)+(-4)(2-4)+3(4-3)] \\
& =\frac{1}{2}[11 \times 1+(-4)(-2)+3(1)] \\
& =\frac{1}{2}(11+8+3)=\frac{22}{2}=11
\end{array}
$$

\therefore Required area of $\triangle A B C=11$

Question 17:

If the points $A(2,9), B(a, 5)$ and $C(5,5)$ are the vertices of a $A B C$ right angled at B, then find the values of a and hence the area of $\triangle A B C$.

Solution:

Given that, the points $A(2,9), B(a, 5)$ and $C(5,5)$ are the vertices of a $\triangle A B C$ right angled at B .
By Pythagoras theorem, $\mathrm{AC}^{2}=A B^{2}+$ $B C^{2}$

$$
\begin{aligned}
& {\left[\because \text { distance between two points }\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right)=\sqrt{\left(x_{2}-x_{1}{ }^{2}\right)+\left(y_{2}-y_{1}\right)^{2}}\right] } \\
&=\sqrt{a^{2}+4-4 a+16}=\sqrt{a^{2}-4 a+20} \\
& B C=\sqrt{(5-a)^{2}+(5-5)^{2}} \\
&=\sqrt{(5-a)^{2}+0}=5-a \\
& A C=\sqrt{(2-5)^{2}+(9-5)^{2}} \\
&=\sqrt{(-3)^{2}+(4)^{2}}=\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

Put the values of $A B, B C$ and $A C$ in Eq. (i), we get

$$
(5)^{2}=\left(\sqrt{a^{2}-4 a+20}\right)^{2}+(5-a)^{2}
$$

$\Rightarrow \quad 25=a^{2}-4 a+20+25+a^{2}-10 a$
$\Rightarrow \quad 2 a^{2}-14 a+20=0$
$\Rightarrow \quad a^{2}-7 a+10=0$
$\Rightarrow \quad a^{2}-2 a-5 a+10=0 \quad$ [by factorisation method]
$\Rightarrow \quad a(a-2)-5(a-2)=0$
$\Rightarrow \quad(a-2)(a-5)=0$
$\therefore \quad a=2,5$
Here, $a \neq 5$, since at $a=5$, the length of $B C=0$. It is not possible because the sides $A B, B C$ and $C A$ form a right angled triangle.
So,

$$
a=2
$$

Now, the coordinate of A, B and C becomes $(2,9),(2,5)$ and $(5,5)$, respectively.

$$
\begin{aligned}
\because \quad \text { Area of } \triangle A B C & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
\therefore \quad \Delta & =\frac{1}{2}[2(5-5)+2(5-9)+5(9-5)] \\
& =\frac{1}{2}[2 \times 0+2(-4)+5(4)] \\
& =\frac{1}{2}(0-8+20)=\frac{1}{2} \times 12=6
\end{aligned}
$$

Hence, the required area of $\triangle A B C$ is 6 sq units.

Question 18:

Find the coordinates of the point R on the line segment joining the points $P(-1,3)$ and $\mathrm{Q}(2,5)$ such that
$P R=\overline{5} P Q$.

Solution:

According to the question,

Given that,

$$
P R=\frac{3}{5} P Q
$$

$$
\begin{array}{lr}
\Rightarrow & \frac{P Q}{P R}=\frac{5}{3} \\
\Rightarrow & \frac{P R+R Q}{P R}=\frac{5}{3} \\
\Rightarrow & 1+\frac{R Q}{P R}=\frac{5}{3}
\end{array}
$$

$$
\Rightarrow \quad \frac{P Q}{P R}=\frac{5}{3}-1=\frac{2}{3}
$$

$$
\therefore \quad R Q: P R=2: 3
$$

$$
\text { or } \quad P R: R Q=3: 2
$$

Suppose, $R(x, y)$ be the point which divides the line segment joining the points $P(-1,3)$ and $Q(2,5)$ in the ratio $3: 2$.

$$
\begin{aligned}
\therefore \quad(x, y) & =\left\{\frac{3(2)+2(-1)}{3+2}, \frac{3(5)+2(3)}{3+2}\right\} \\
& {\left[\because \text { by internal section formula, }\left\{\frac{m_{2} x_{1}+m_{1} x_{2}}{m_{1}+m_{2}}, \frac{m_{2} y_{1}+m_{1} y_{2}}{m_{1}+m_{2}}\right\}\right] } \\
& =\left(\frac{6-2}{5}, \frac{15+6}{5}\right)=\left(\frac{4}{5}, \frac{21}{5}\right)
\end{aligned}
$$

Hence, the required coordinates of the point R is $\left(\frac{4}{5}, \frac{21}{5}\right)$.

Question 19:

Find the values of k, if the points $A(k+1,2 k), B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$ are colli near.

Solution:

We know that, if three points are collinear, then the area of triangle formed by these points is zero.
Since, the points $A(k+1,2 k), B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$ are collinear.
Then, area of $\triangle A B C=0$

$$
\Rightarrow \quad \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right]=0\right.
$$

Here, $\quad x_{1}=k+1, x_{2}=3 k, x_{3}=5 k-1$ and $y_{1}=2 k_{1}, y_{2}=2 k+3, y_{3}=5 k$
$\Rightarrow \quad \frac{1}{2}[(k+1)(2 k+3-5 k)+3 k(5 k-2 k)+(5 k-1)(2 k-(2 k+3))]=0$
$\Rightarrow \quad \frac{1}{2}[(k+1)(-3 k+3)+3 k(3 k)+(5 k-1)(2 k-2 k-3)]=0$
$\Rightarrow \quad \frac{1}{2}\left[-3 k^{2}+3 k-3 k+3+9 k^{2}-15 k+3\right]=0$

$$
\Rightarrow
$$

$$
\frac{1}{2}\left(6 k^{2}-15 k+6\right)=0 \quad[\text { multiply by } 2]
$$

\Rightarrow	$6 k^{2}-15 k+6=0$
\Rightarrow	$2 k^{2}-5 k+2=0$
\Rightarrow	$2 k^{2}-4 k-k+2=0$
\Rightarrow	$2 k(k-2)-1(k-2)=0$
\Rightarrow	$(k-2)(2 k-1)=0$
If $k-2=0$, then $k=2$	
If $2 k-1=0$, then $k=\frac{1}{2}$	
\therefore	$k=2, \frac{1}{2}$

Hence, the required values of k are 2 and $\frac{1}{2}$

Question 20:

Find the ratio in which the line $2 x+3 y-5=0$ divides the line segment joining the points $(8,-9)$ and $(2,1)$. Also, find the coordinates of the point of division.

Solution:

Let the line $2 x+3 y-5=0$ divides the line segment joining the points $A(8,-9)$ and $B(2,1)$ in the ratio $\lambda: 1$ at point P.

$$
\begin{aligned}
& \therefore \quad \text { Coordinates of } P \equiv\left\{\frac{2 \lambda+8}{\lambda+1}, \frac{\lambda-9}{\lambda+1}\right\} \\
& {\left[\because \text { internal division }=\left\{\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right\}\right] }
\end{aligned}
$$

But P lies on $2 x+3 y-5=0$.

$$
\begin{array}{lr}
\therefore & 2\left(\frac{2 \lambda+8}{\lambda+1}\right)+3\left(\frac{\lambda-9}{\lambda+1}\right)-5=0 \\
\Rightarrow & 2(2 \lambda+8)+3(\lambda-9)-5(\lambda+1)=0 \\
\Rightarrow & 4 \lambda+16+3 \lambda-27-5 \lambda-5=0 \\
\Rightarrow & \lambda=8 \Rightarrow \lambda: 1=8: 1
\end{array}
$$

So, the point P divides the line in the ratio $8: 1$.

$$
\begin{aligned}
\therefore \quad \text { Point of division } P & \equiv\left\{\frac{2(8)+8}{8+1}, \frac{8-9}{8+1}\right\} \\
& \equiv\left(\frac{16+8}{9},-\frac{1}{9}\right) \\
& \equiv\left(\frac{24}{9}, \frac{-1}{9}\right) \equiv\left(\frac{8}{3}, \frac{-1}{9}\right)
\end{aligned}
$$

Hence, the required point of division is $\left(\frac{8}{3}, \frac{-1}{9}\right)$.

Exercise 7.4 Long Answer Type Questions

Question 1:

If $(-4,3)$ and $(4,3)$ are two vertices of an equilateral triangle, then find the
coordinates of the third vertex, given that the origin lies in the interior of the triangle. Solution:
Let the third vertex of an equilateral triangle be (x, y). Let $A(-4,3), B(43)$ and $C(x$, y).

We know that, in equilateral triangle the angle between two adjacent side is 60 and all three sides are equal.
\Rightarrow

$$
\begin{align*}
A B & =B C=C A \\
A B^{2} & =B C^{2}=C A^{2} \tag{i}
\end{align*}
$$

Now, taking first two parts.

$$
\begin{array}{rlrl}
A B^{2} & =B C^{2} \\
\Rightarrow & (4+4)^{2}+(3-3)^{2} & =(x-4)^{2}+(y-3)^{2} \\
\Rightarrow & 64+0 & =x^{2}+16-8 x+y^{2}+9-6 y \\
\Rightarrow & x^{2}+y^{2}-8 x-6 y & =39 \tag{ii}
\end{array}
$$

Now, taking first and third parts,

$$
\begin{array}{rlrl}
A B^{2} & =C A^{2} \\
\Rightarrow & (4+4)^{2}+(3-3)^{2} & =(-4-x)^{2}+(3-y)^{2} \\
\Rightarrow & 64+0 & =16+x^{2}+8 x+9+y^{2}-6 y \\
\Rightarrow & x^{2}+y^{2}+8 x-6 y=39 \tag{iii}
\end{array}
$$

On subtracting Eq. (ii) from Eq. (iii), we get

$$
\begin{aligned}
& x^{2}+y^{2}+8 x-6 y=39 \\
& x^{2}+y^{2}-8 x-6 y=39 \\
& 16 x=0 \\
& \Rightarrow \quad x=0
\end{aligned}
$$

On subtracting Eq. (ii) from Eq. (iii), we get

$$
\left.\Rightarrow \quad \begin{array}{rl}
x^{2}+y^{2}+8 x-6 y & =39 \\
x^{2}+y^{2}+8 x-6 y & =39
\end{array}\right] \begin{aligned}
16 x & =0 \\
\Rightarrow \quad x & =0
\end{aligned}
$$

Now, put the value of x in Eq. (ii), we get

$$
\begin{array}{ll}
\Rightarrow & \begin{array}{l}
0+y^{2}-0-6 y=39 \\
y^{2}-6 y-39=0
\end{array} \\
\therefore & y=\frac{6 \pm \sqrt{(-6)^{2}-4(1)(-39)}}{2 \times 1} \\
\Rightarrow & {\left[\because \text { solution of } a x^{2}+b x+c=0 \text { is } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right]} \\
\Rightarrow & y=\frac{6 \pm \sqrt{36+156}}{2} \\
\Rightarrow & y=\frac{6 \pm \sqrt{192}}{2} \\
\Rightarrow & y=\frac{6 \pm 2 \sqrt{48}}{2}=3 \pm \sqrt{48} \\
\Rightarrow & y=3 \pm 4 \sqrt{3} \\
\Rightarrow & y=3+4 \sqrt{3} \text { or } 3-4 \sqrt{3}
\end{array}
$$

So, the points of third vertex are $(0,3+4 \sqrt{3})$ or $(3-4 \sqrt{3})$
But given that, the origin lies in the interior of the $\triangle A B C$ and the x-coordinate of third vertex is zero. Then, y-coordinate of third vertex should be negative.

Hence, the required coordinate of third vertex, $C \equiv(0,3-4 \sqrt{3}) . \quad[\because c \not \equiv(0,3+4 \sqrt{3})]$

Question 2:

$A(6,1), B(8,2)$ and $C(9,4)$ are three vertices of a parallelogram $A B C D$. If E is the mid-point of $D C$, then find the area of $\triangle A D E$.

Solution:

Given that, $A(6,1)$, $B(8,2)$ and $C(9,4)$ are three vertices of a parallelogram $A B C D$.

Let the fourth vertex of parallelogram be (x, y).
We know that, the diagonals of a parallelogram bisect each other.

$\therefore \quad$ Mid-point of $B D=$ Mid-point of $A C$
$\Rightarrow \quad\left(\frac{8+x}{2}, \frac{2+y}{2}\right)=\left(\frac{6+9}{2}, \frac{1+4}{2}\right)$
$\left[\because\right.$ mid-point of a line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left.\left(x_{2}, y_{2}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]$
$\Rightarrow \quad\left(\frac{8+x}{2}, \frac{2+y}{2}\right)=\left(\frac{15}{2}, \frac{5}{2}\right)$
$\therefore \quad \frac{8+x}{2}=\frac{15}{2}$
$\Rightarrow \quad 8+x=15 \Rightarrow x=7$
and

$$
\frac{2+y}{2}=\frac{5}{2}
$$

$$
2+y=5 \Rightarrow y=3
$$

So, fourth vertex of a parallelogram is $D(7,3)$.
\quad Now, mid-point of side $D C \equiv\left(\frac{7+9}{2}, \frac{3+4}{2}\right)$

$$
E \equiv\left(8, \frac{7}{2}\right)
$$

$$
\begin{aligned}
{\left[\because \text { area of } \triangle A B C \text { with vertices }\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \text { and }\left(x_{3}, y_{3}\right)\right.} & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)\right. \\
& \left.+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]
\end{aligned}
$$

\therefore Area of $\triangle A D E$ with vertices $A(6,1), D(7,3)$ and $E\left(8, \frac{7}{2}\right)$,

$$
\begin{aligned}
\Delta & =\frac{1}{2}\left[6\left(3-\frac{7}{2}\right)+7\left(\frac{7}{2}-1\right)+8(1-3)\right] \\
& =\frac{1}{2}\left[6 \times\left(\frac{-1}{2}\right)+7\left(\frac{5}{2}\right)+8(-2)\right] \\
& =\frac{1}{2}\left(-3+\frac{35}{2}-16\right) \\
& =\frac{1}{2}\left(\frac{35}{2}-19\right)=\frac{1}{2}\left(\frac{-3}{2}\right)
\end{aligned}
$$

$$
=\frac{-3}{4} \quad \text { [but area cannot be negative] }
$$

Hence, the required area of $\triangle A D E$ is $\frac{3}{4}$ sq units.

Question 3:

The points $A\left(x_{1}, y_{1}\right), B\left(x_{2} y_{2}\right)$ and $C\left(x_{3}, y_{3}\right)$ are the vertices of $\Delta A B C$.
(i) The median from A meets $B C$ at Find the coordinates of the point D.
(ii) Find the coordinates of the point P on $A D$ such that $A P: P D=2: 1$
(iii) Find the coordinates of points Q and R on medians $B E$ and $C F$, respectively such that $\mathrm{BQ}: \mathrm{QE}=2: 1$ and $\mathrm{CR}: \mathrm{RF}=2: 1$
(iv) What are the coordinates of the centroid of the $\triangle A B C$?

Solution:

Given that, the points $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ andC $\left(x_{3}, y_{3}\right)$ are the vertices of $\triangle A B C$.
(i) We know that, the median bisect the line segment into two equal parts i.e., here D is the mid-point of $B C$.
$\begin{aligned} \therefore \text { Coordinate of mid-point of } B C & =\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right) \\ \Rightarrow \quad D & \equiv\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)\end{aligned}$
(ii) Let the coordinates of a point P be (x, y).

Given that, the point $P(x, y)$, divide the line joining $A\left(x_{1}, y_{1}\right)$ and $D\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$ in the ratio $2: 1$, then the coordinates of P

(iii) Let the coordinates of a point Q be (p, q)

Given that, the point $Q(p, q)$, divide the line joining $B\left(x_{2}, y_{2}\right)$ and $E\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right)$ in the ratio $2: 1$, then the coordinates of Q

$$
\begin{aligned}
& \equiv\left[\frac{2 \cdot\left(\frac{x_{1}+x_{3}}{2}\right)+1 \cdot x_{2}}{2+1}, \frac{2 \cdot\left(\frac{y_{1}+y_{2}}{2}\right)+1 \cdot y_{2}}{2+1}\right] \\
& =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
\end{aligned}
$$

[since, $B E$ is the median of side $C A$, so $B E$ divides $A C$ in to two equal parts.

$$
\left.\therefore \text { mid-point of } A C=\text { Coordinate of } E \Rightarrow E=\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right)\right]
$$

So, the required coordinate of point $Q \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

Now, let the coordinates of a point E be (α, β). Given that, the point $R(\alpha, \beta)$, divide the line joining $C\left(x_{3}, y_{3}\right)$ and $F\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ in the ratio $2: 1$, then the coordinates of R

$$
\begin{aligned}
& \equiv\left[\frac{2 \cdot\left(\frac{x_{1}+x_{2}}{2}\right)+1 \cdot x_{3}}{2+1}, \frac{2 \cdot\left(\frac{y_{1}+y_{2}}{2}\right)+1 \cdot y_{3}}{2+1}\right] \\
& =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
\end{aligned}
$$

[since, $C F$ is the median of side $A B$. So, $C F$ divides $A B$ in to two equal parts.

$$
\left.\therefore \text { mid-point of } A B=\text { coordinate of } F \Rightarrow F=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]
$$

So, the required coordinate of point $R \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
(iv) Coordinate of the centroid of the $\triangle A B C$

$$
\begin{aligned}
& =\left(\frac{\text { Sum of abscissa of all vertices, }}{3} ; \frac{\text { Sum of ordinate of all vertices }}{3}\right) \\
& =\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
\end{aligned}
$$

Question 4:

If the points $A(1,-2), B(2,3), C(a, 2)$ and $D(-4,-3)$ form a parallelogram, then find the value of a and height of the parallelogram taking $A B$ as base.

Solution:

In parallelogram, we know that, diagonals are bisects each other i.e., mid-point of AC = mid-point of BD

$$
\begin{array}{ll}
\Rightarrow & \left(\frac{1+a}{2}, \frac{-2+2}{2}\right)=\left(\frac{2-4}{2}, \frac{3-3}{2}\right) \\
\Rightarrow & \frac{1+a}{2}=\frac{2-4}{2}=\frac{-2}{2}=-1
\end{array}
$$

$\left[\right.$ since, mid-point of a line segment having points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is $\left.\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right]$

$$
\begin{array}{rrr}
\Rightarrow & 1+a & =-2 \\
\Rightarrow & a & =-3
\end{array}
$$

So, the required value of a is -3 .

Given that, AS as base of a parallelogram and drawn a perpendicular from D to AS which meet $A S$ at P. So, DP is a height of a parallelogram.

Now, equation of base $A B$, passing through the points $(1,-2)$ and $(2,3)$ is

$$
\begin{array}{ll}
\Rightarrow & \left(y-y_{1}\right)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right) \\
\Rightarrow & (y+2)=\frac{3+2}{2-1}(x-1) \\
\Rightarrow & (y+2)=5(x-1) \\
\Rightarrow & 5 x-y=7 \tag{i}\\
& \text { Slope of } A B, \text { say } m_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3+2}{2-1}=5
\end{array}
$$

Let the slope of $D P$ be m_{2}.
Since, $D P$ is perpendicular to $A B$.
By condition of perpendicularity,

$$
\begin{aligned}
m_{1} \cdot m_{2} & =-1 \Rightarrow 5 \cdot m_{2}=-1 \\
m_{2} & =-\frac{1}{5}
\end{aligned}
$$

Now, Eq. of $D P$, having slope $\left(-\frac{1}{5}\right)$ and passing the point $(-4,-3)$ is

$$
\begin{array}{ll}
& \left(y-y_{1}\right)=m_{2}\left(x-x_{1}\right) \\
\Rightarrow & (y+3)=-\frac{1}{5}(x+4) \\
\Rightarrow & 5 y+15=-x-4 \\
\Rightarrow & x+5 y=-19 \tag{ii}
\end{array}
$$

On adding Eqs. (i) and (ii), then we get the intersection point P.
Put the value of y from Eq. (i) in Eq. (ii), we get

$$
\begin{aligned}
\Rightarrow & x+25 x-35 & =-19 \\
\Rightarrow & 26 x & =16 \\
\therefore & x & =\frac{8}{13}
\end{aligned}
$$

Put the value of x in Eq. (i), we get

$$
\begin{array}{ll}
\Rightarrow & y=5\left(\frac{8}{13}\right)-7=\frac{40}{13}-7 \\
\Rightarrow & y=\frac{40-91}{13} \Rightarrow y=\frac{-51}{13}
\end{array}
$$

$\therefore \quad$ Coordinates of point $P \equiv\left(\frac{8}{13}, \frac{-51}{13}\right)$
So, length of the height of a parallelogram,

$$
D P=\sqrt{\left(\frac{8}{13}+4\right)^{2}+\left(\frac{-51}{13}+3\right)^{2}}
$$

[\because by distance formula, distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, is

$$
d=\sqrt{\left.\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right]}
$$

$$
\begin{aligned}
\Rightarrow D P & =\sqrt{\left(\frac{60}{13}\right)^{2}+\left(\frac{-12}{13}\right)^{2}} \\
& =\frac{1}{13} \sqrt{3600+144} \\
& =\frac{1}{13} \sqrt{3744}=\frac{12 \sqrt{26}}{13}
\end{aligned}
$$

Hence, the required length of height of a parallelogram is $\frac{12 \sqrt{26}}{13}$.

Question 5:

Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?

Solution:

Yes, from the figure we observe that the positions of four students A, B, C and D are $(3,5),(7,9),(11,5)$ and $(7,1)$ respectively i.e., these are four vertices of a quadrilateral. Now, we will find the type of this quadrilateral. For this, we will find all its sides.
We see that, $A B=B C=C D=D A$ i.e., all sides are equal.

Now,

$$
\begin{aligned}
& A B=\sqrt{(7-3)^{2}+(9-5)^{2}} \\
& \quad\left[\text { by distance formula, } d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}\right]
\end{aligned}
$$

$$
A B=\sqrt{(4)^{2}+(4)^{2}}=\sqrt{16+16}
$$

$$
A B=4 \sqrt{2}
$$

$$
B C=\sqrt{(11-7)^{2}+(5-9)^{2}}=\sqrt{(4)^{2}+(-4)^{2}}
$$

$$
=\sqrt{16+16}=4 \sqrt{2}
$$

$$
C D=\sqrt{(7-11)^{2}+(1-5)^{2}}=\sqrt{(-4)^{2}+(-4)^{2}}
$$

$$
=\sqrt{16+16}=4 \sqrt{2}
$$

and

$$
\begin{aligned}
D A & =\sqrt{(3-7)^{2}+(5-1)^{2}}=\sqrt{(-4)^{2}+(4)^{2}} \\
& =\sqrt{16+16}=4 \sqrt{2}
\end{aligned}
$$

Now, we find length of both diagonals.
and

$$
\begin{aligned}
& A C=\sqrt{(11-3)^{2}+(5-5)^{2}}=\sqrt{(8)^{2}+0}=8 \\
& B D=\sqrt{(7-7)^{2}+(1-9)^{2}}=\sqrt{0+(-8)^{2}}=8
\end{aligned}
$$

Here,

$$
A C=B D
$$

Since,

$$
A B=B C=C D=D A \text { and } A C=B D
$$

Which represent a square. Also known the diagonals of a square bisect each other. So, P be position of Jaspal in which he is equidistant from each of the four students A, B, C and D.
\therefore Coordinates of point $P \equiv$ Mid-point of $A C$

$$
\equiv\left(\frac{3+11}{2}, \frac{5+5}{2}\right) \equiv\left(\frac{14}{2}, \frac{10}{2}\right) \equiv(7,5)
$$

$\left[\right.$ since, mid-point of a line segment having points $\left(x_{1}, y_{1}\right)$ and $\left.\left(x_{2}, y_{2}\right)=\left(\frac{x_{1}+y_{1}}{2}, \frac{x_{2}+y_{2}}{2}\right)\right]$
Hence, the required position of Jaspal is $(7,5)$.

Question 6:

Ayush starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter's school and then reaches the office. What is the extra distance travelled by Ayush in reaching his office? (Assume that all distance covered are in straight lines). If the house is situated at (2, 4), bank at $(5,8)$, school at $(13,14)$ and office at $(13,26)$ and coordinates are in km.
Solution:

By given condition, we drawn a figure in which every place are indicated with his coordinates and direction also.
We know that,
distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$,

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Now, distance between house and bank $=\sqrt{(5-2)^{2}+(8-4)^{2}}$

$$
=\sqrt{(3)^{2}+(4)^{2}}=\sqrt{9+16}=\sqrt{25}=5
$$

Distance between bank and daughter's school

$$
\begin{aligned}
& =\sqrt{(13-5)^{2}+(14-8)^{2}}=\sqrt{(8)^{2}+(6)^{2}} \\
& =\sqrt{64+36}=\sqrt{100}=10
\end{aligned}
$$

Distance between daughter's school and office $=\sqrt{(13-13)^{2}+(26-14)^{2}}$

$$
=\sqrt{0+(12)^{2}}=12
$$

Total distance (House + Bank + School + Office) travelled $=5+10+12=27$ units Distance between house to offices $=\sqrt{(13-2)^{2}+(26-4)^{2}}$

$$
\begin{aligned}
& =\sqrt{(11)^{2}+(22)^{2}}=\sqrt{121+484} \\
& =\sqrt{605}=24.59 \approx 24.6 \mathrm{~km}
\end{aligned}
$$

So, extra distance travelled by Ayush in reaching his office $=27-24.6=2.4 \mathrm{~km}$ Hence, the required extra distance travelled by Ayush is 2.4 km .

