Chapter 9: Areas of a parallelogram
 Exercise 9.1 (MCQ)

Question 1:
The median of a triangle divides it into two
(a) triangles of equal area
(b) congruent triangles
(c) right-angled triangles
(d) isosceles triangles

Answer: (a) We know that a median of a triangle is a line segment joining a vertex to the mid-point of the opposite side. Thus, a median of a triangle divides it into two triangles of equal area.

Question 2:

In which of the following figures, you find two polygons on the same base and between the same parallels?

(a)

(c)

(b)

(d)

Answer: (d) In figures (a), (b) and (c) there are two polygons on the same base but they are not between the same parallels.
In figure (d), there are two polygons (PQRA and BQRS) on the same base and between the same parallels.

Question 3:

The figure obtained by joining the mid-points of the adjacent sides of a rectangle of sides 8 cm and 6 cm , is
(a) a rectangle of area $24 \mathrm{~cm}^{2}$
(b) a square of area $25 \mathrm{~cm}^{2}$
(c) a trapezium of area $\mathbf{2 4} \mathrm{cm}^{2}$
(d) a rhombus of area $24 \mathbf{c m}^{2}$

Answer: (d)
Here, length of rectangle $A B C D=8 \mathrm{~cm}$ and breadth of rectangle $A B C D=6 . \mathrm{cm}$ Let E, F, G and H are the mid-points of the sides of rectangle $A B C D$, then EFGH is a rhombus.

_Length of $A B C D=8 C M$
Breadth of $A B C D=6 \mathrm{~cm}$
Let, E, F, G, H are the mid-points of sides of the rectangle $A B C D$, hence $E F G H$ is a rhombus and the diagonals of the rhombus is EG and FH
Here, $E G=B C=8 \mathrm{~cm}$
and $\mathrm{HF}=\mathrm{AB}=6 \mathrm{~cm}$
Area of rhombus $=\frac{\text { Product of diagonals }}{2}=\frac{8 \times 6}{2}=24 \mathrm{~cm}^{2}$
Question 4:
In the figure, the area of parallelogram $A B C D$ is
(a) $\mathrm{AB} \times \mathrm{BM}$
(b) $\mathrm{BC} \times \mathrm{BN}$
(c) $\mathrm{DC} \times \mathrm{DL}$
(d) $A D \times D L$

Thinking Process

Use the formula, area of parallelogram =Base \times Altitude to get the required result

Solution:

(c) We know that area of a parallelogram is the product of any side and the corresponding altitude (or height).
Here, when $A B$ is base, then the height is DL.
Area of parallelogram $=A B \times D L$ and when $A D$ is base, then the height is $B M$.
Area of parallelogram $=A D \times B M$ When $D C$ is base, then the height is DL.
Area of parallelogram $=D C \times D L$ and when $B C$ is base, then the height is not given.
Hence, the option (c) is correct.

Question 5:

In the figure, if parallelogram ABCD and rectangle ABEM are of equal area, then

[sides of rectangle]
(a) perimeter of $A B C D=$ perimeter of ABEM
(b) the perimeter of $A B C D$ < perimeter of $A B E M$
(c) the perimeter of $A B C D$ > perimeter of ABEM
(d) the perimeter of $A B C D=1 / 2$ (perimeter of $A B E M$)

Answer: (c) In rectangle $\mathrm{ABEM}, \mathrm{AB}=\mathrm{EM}$ [sides of rectangle] and in parallelogram
$A B C D, C D=A B$
On adding, both equations, we get
$A B+C D=E M+A B$
We know that the perpendicular distance between two parallel sides of a parallelogram is always less than the length of the other parallel sides.
$B E<B C$ and $A M<A D$
[since, in a right-angled triangle, the hypotenuse is greater than the other side]
On adding both above inequalities, we get
$S E+A M<B C+A D$ or $B C+A D>B E+A M$
On adding $A B+C D$ on both sides, we get
$A B+C D+B C+A D>A B+C D+B E+A M$
or, $A B+B C+C D+A D>A B+B E+E M+A M \quad[\because C D=A B=E M]$
The perimeter of parallelogram $A B C D>$ perimeter of rectangle $A B E M$

Question 6:

The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to
(a) $1 / 2$ ar (ABC)
(b) $1 / 3$ ar (ABC)
(c) $1 / 4 \operatorname{ar}(A B C)$
(d) ar (ABC)

Answer: (a)
We know that, if D, E and F are respectively the mid-points of the sides $B C, C A$ and $A B$ od triangle $A B C$, then all four triangles have equal area i.e., $\operatorname{ar}(\triangle \mathrm{AFE})=\operatorname{ar}(\triangle \mathrm{BFD})=\operatorname{ar}(\triangle \mathrm{EDC})=\operatorname{ar}(\triangle \mathrm{DEF})$
Area of $\triangle \mathrm{DEF}={ }_{4}^{1}$ Area of $\Delta \mathrm{ABC}$

If we take D as the fourth vertex, then the area of the parallelogram AFDE, $=$ area of $\triangle A F E+$ area of $\triangle D E F$
$=$ area of $\triangle D E F+$ area of $\triangle D E F$
$=2 \operatorname{ar}(\triangle \mathrm{DEF})$ \qquad [using eq (1)]
$=2 \times \frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$ [Using eq(2)]
$=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$

Question 7: Two parallelograms are on equal bases and between the same parallels. The ratio of their areas is
(a) $1: 2$
(b) $1: 1$
(c) $2: 1$
(d) $3: 1$

Answer: (b) We know that parallelogram on equal bases and between the same parallels are equal in area. So, the ratio of their areas is $1: 1$.

Question 8:

ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD
(a) is a rectangle
(b) is always a rhombus
(c) is a parallelogram
(d) need not be any of (a), (b) or (c)

Answer: (d) Here, ABCD need not be any of rectangle, rhombus and parallelogram because if $A B C D$ is a square, then its diagonal $A C$ also divides it into two parts which are equal in area.

Question 9:

If a triangle and a parallelogram are on the same base and between the same parallels, then the ratio of the area of the triangle to the area of a parallelogram
is
(a) $1: 3$
(b) $1: 2$
(c) $\mathbf{3 : 1}$
(d) $1: 4$

Answer: (b) We know that, if a parallelogram and a triangle are on the same base and between the same parallels, then the area of the triangle is half the area of the parallelogram.

Area of the triangle $=\frac{1}{2} \times$ area of the parallelogram
or, $\frac{\text { area of triangle }}{\text { area of parallelogram }}=\frac{1}{2}$
area of a triangle: area of parallelogram $=1: 2$

Exercise 9.2: Very Short Answer Type Questions

Write whether True or False and justify your answer.
Question 1:
$A B C D$ is a parallelogram and X is the mid-point of $A B$. If ar $(A X C D)=24 \mathrm{~cm}^{2}$, then ar $(A B C)=24 \mathrm{~cm}^{2}$.

Answer: False

Given, $A B C D$ is a parallelogram and ar $(A X C D)=24 \mathrm{~cm}^{2}$
Let the area of parallelogram $A B C D$ is $2 \mathrm{y} \mathrm{cm}^{2}$ and join $A C$.

We know that diagonal divides the area of a parallelogram into two equal areas.
Thus, let, $\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D)=y$
Also, X is the mid-point of $A B$.
so, $\operatorname{ar}(\triangle \mathrm{ACX})=\operatorname{ar}(\triangle \mathrm{BCX})$ [Since, X is the median in $(\triangle \mathrm{ABC})$]

$$
=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \mathrm{y}
$$

Now, $\operatorname{ar}(\mathrm{AXCD})=\operatorname{ar}(\triangle \mathrm{ADC})+\operatorname{ar}(\triangle \mathrm{ACX})$
$24=y+\frac{y}{2}$
or, $24=\frac{3 y}{2}$
or, $y=\frac{24 \times 2}{3}=16 \mathrm{~cm}^{2}$

Hence, $\operatorname{ar}(\triangle \mathrm{ABC})=16 \mathrm{~cm}^{2}$

Question 2:

PQRS is a rectangle inscribed in a quadrant of a circle of radius 13 cm and A is any point on $P Q$. If $P S=5 \mathrm{~cm}$, then $\operatorname{ar}(\triangle P A S)=30 \mathrm{~cm}^{2}$.

Answer: true.
Given, PS = 5 cm
radius of circle $=S Q=13 \mathrm{~cm}$

In right-angled triangle SPQ,
$\mathrm{SQ}^{2}=\mathrm{PQ}^{2}+\mathrm{PS}^{2}$ [By Pythagoras theorem]
$13^{2}=\mathrm{PQ}^{2}+5^{2}$
or, $\mathrm{PQ}^{2}=169-25=144$
or, $P Q=12 \mathrm{~cm}$
Now, $\operatorname{ar}(\triangle \mathrm{APS})=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times P S \times P Q \\
& =\frac{1}{2} \times 5 \times 12 \\
& =30 \mathrm{~cm}^{2}
\end{aligned}
$$

So, the given statement is true, if A coincides with Q.

Question 3:

PQRS is a parallelogram whose area is $180 \mathrm{~cm}^{2}$ and A is any point on the diagonal QS. The area of $\triangle A S R=90 \mathrm{~cm}^{2}$.

Solution:

False
Given, area of parallelogram PQRS $=180 \mathrm{~cm}^{2}$ and QS is it's diagonal which divides
it into two triangles of equal area.

Question 4:

$A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. Then, $\operatorname{ar}(\triangle \mathrm{BDE})=1 / 4 \operatorname{ar}(\triangle \mathrm{ABC})$.

Solution:

True

Given, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDE}$ are two equilateral triangles.
Area of equilateral $\triangle \mathrm{ABC}=\frac{\sqrt{3}}{4} \times(\text { side })^{2}=\frac{\sqrt{3}}{4}(\mathrm{BC})^{2}$
Also given, D is the midpoint of $B C$.

$B C=D C=\frac{1}{2} B C$
Now, the area of an equilateral $\triangle \mathrm{BDE}$
$=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
$=\frac{\sqrt{3}}{4} \times(B D)^{2}$
$=\frac{\sqrt{3}}{4} \times\left(\frac{1}{2} B C\right)^{2} \quad$ [From eq (2)]
$=\frac{\sqrt{3}}{4} \times \frac{1}{4} \mathrm{BC}^{2}$
$=\frac{1}{4}\left(\frac{\sqrt{3}}{4} B C^{2}\right)$
area of an equilateral $\triangle \mathrm{BDE}=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$

Question 5:

In the figure, $A B C D$ and EFGD are two parallelograms and G is the mid-point of $C D$. Then, $\operatorname{ar}(\triangle D P C)=1 / 2 \operatorname{ar}(E F G D)$.

Answer: False

In the given figure, join PG. Since G is the mid-point of $C D$.
Thus, $P G$ is a median of $\triangle D P C$ and it divides the triangle into parts of equal areas.
Then, $\operatorname{ar}(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{GPC})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{DPC})$.

Also, we know that, if a parallelogram and a triangle lie on the same base and between the same parallels then the area of a triangle is equal to half of the area of a parallelogram.
here, parallelogram EFGH and triangle DPG lie on the same base DG and between the same parallels $D G$ and $E F$.
So, $\operatorname{ar}(\Delta \mathrm{DPG})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{EFGD})$.
from eq(1) and eq(2), $\frac{1}{2} \operatorname{ar}(\Delta \mathrm{DPC})=\frac{1}{2} \operatorname{ar}(\Delta \mathrm{EFGD})$ or, $\operatorname{ar}(\triangle \mathrm{DPC})=\operatorname{ar}(\triangle \mathrm{EFGD})$

Exercise 9.3: Short Answer Type Questions

Question 1:

In the figure, PSDA is a parallelogram. Points Q and R are taken on PS such that $P Q=Q R=R S$ and $P A||Q B|| R C$. Prove that ar (PQE) =ar (CFD).

Thinking Process

1. Firstly, use the formula, area of parallelogram $=$ Base \times Altitude
2. Further, proving that $A P Q E=A D C F$, by ASA congruent rule.
3. At the end use the property that congruent figures have the same area.

Answer: Given In a parallelogram PSDA, points 0 and R are on PS such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$ and $\mathrm{PA}\|\mathrm{QB}\| \mathrm{RC}$.
To prove ar $(P Q E)=\operatorname{ar}(C F D)$
Proof In parallelogram PABQ ,
and PA||QB [given]
So, PABQ is a parallelogram.
$P Q=A B$
Similarly, QBCR is also a parallelogram.
QR = BC ...(ii)
and RCDS is a parallelogram.
RS =CD ...(iii)
Now, $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$...(iv)
From Eqs. (i), (ii) (iii) and (iv),
PQ || AB [\because in parallelogram PSDA, PS || AD]
In $\triangle P Q E$ and $\triangle D C F, \angle Q P E=\angle F D C$
[since PS || AD and PD is transversal, then alternate interior angles are equal]
$P Q=C D$ [from Eq. (v)]
and $\angle \mathrm{PQE}=\angle \mathrm{FCD}$
$[\because \angle \mathrm{PQE}=\angle \mathrm{PRC}$ corresponding angles and $\angle \mathrm{PRC}=\angle \mathrm{FCD}$ alternate interior angles]
$\triangle \mathrm{PQE}=\triangle \mathrm{DCF}$ [by ASA congruence rule]
$\therefore \operatorname{ar}(\triangle P Q E)=\operatorname{ar}(\triangle C F D)$ [since,congruent figures have equal area]
Hence proved.

Question 2:

X and Y are points on the side $L N$ of the triangle $L M N$ such that $L X=X Y=Y N$. Through X, a line is drawn parallel to $L M$ to meet MN at Z (see figure). Prove that $\operatorname{ar}(\Delta L Z Y)=\operatorname{ar}(M Z Y X)$.

Thinking Process
 Use the property that the triangles on the same base and between the same two parallel lines are equal in area. Further, prove the required result.

Answer: Given X and Y are points on the side LN such that
$L X=X Y=Y N$ and $X Z \| L M$ To prove $\operatorname{ar}(\Delta L Z Y)=\operatorname{ar}(M Z Y X)$
Proof Since, $\triangle X M Z$ and $\triangle X L Z$ are on the same base $X Z$ and between the same parallel lines LM and XZ.
Then, ar $(\triangle X M Z)=\operatorname{ar}(\triangle X L Z) \ldots$ (i)
On adding ar ($\triangle \mathrm{XYZ}$) both sides of Eq. (i), we get
$\operatorname{ar}(\triangle X M Z)+\operatorname{ar}(\Delta X X Z)=\operatorname{ar}(\Delta X L Z)+\operatorname{ar}(\Delta X Y Z)$
or, ar $(M Z Y X)=\operatorname{ar}(\Delta L Z Y)$ Hence proved.

Question 3:

The area of the parallelogram $A B C D$ is $90 \mathrm{~cm}^{2}$. Find
1.ar (ABEF)
2.ar ($\triangle \mathrm{ABD}$)
3.ar ($\triangle B E F$)

Answer:
Given, area of parallelogram, $\mathrm{ABCD}=90 \mathrm{~cm}^{2}$.

1. We know that parallelograms on the same base and between the same parallel are equal in areas.
Here, parallelograms $A B C D$ and $A B E F$ are on the same base $A B$ and between the same parallels $A B$ and $C F$.
So, ar $(\triangle B E F)=\operatorname{ar}(A B C D)=90 \mathrm{~cm}^{2}$
2. We know that, if a triangle and a parallelogram are on the same base and between the same parallels, then the area of a triangle is equal to half of the area of the parallelogram.
Here, $\triangle A B D$ and parallelogram $A B C D$ are on the same base $A B$ and between the same parallels $A B$ and $C D$.
So, ar $(\triangle A B D)=1 / 2 \operatorname{ar}(A B C D)$
$=1 / 2 \times 90=45 \mathrm{~cm}^{2}\left[\therefore\right.$ ar $\left.(A B C D)=90 \mathrm{~cm}^{2}\right]$
3. Here, ABEF and parallelogram ABEF are on the same base EF and between the same parallels $A B$ and $E F$.
$\operatorname{ar}(\triangle \mathrm{BEF})=1 / 2$ ar (ABEF)
$=1 / 2 \times 90=45 \mathrm{~cm}^{2}\left[\therefore\right.$ ar $(A B E F)=90 \mathrm{~cm}^{2}$, from part (i) $]$

Question 4:

In $\triangle A B C, D$ is the mid-point of $A B$ and P is any point on $B C$. If $C Q|\mid P D$ meets $A B$ in Q (shown in the figure), then prove that $\operatorname{ar}(\triangle B P Q)=1 / 2 \operatorname{ar}(\triangle A B C)$.

Answer:

Given: In triangle $A B C, D$ is the midpoint of $A B$ and P is any point on $B C$
$C Q \| P D$ means $A B$ in Q
To prove: $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{BEF})$
Construction: Join PQ and CD,
Proof: since D is the mid-point of $A B$. So, the $C D$ is the median of ($\triangle A B C$)
We know that a median of a triangle divides it into two triangles of equal areas.
$\operatorname{ar}(\triangle \mathrm{BCD})=\frac{1}{2}(\triangle \mathrm{ABC})$
or, $\operatorname{ar}(\triangle B P D)+\operatorname{ar}(\triangle D P C)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
Now, ($\triangle \mathrm{DPQ}$) and ($\triangle \mathrm{DPC}$) are on the same base DP and between the same parallel lines $D P$ and $C Q$.
So, $\operatorname{ar}(\triangle \mathrm{DPQ})=\operatorname{ar}(\triangle \mathrm{DPC})$.
On putting (1) and (2), we get
$\operatorname{ar}(\triangle \mathrm{BPD})+\operatorname{ar}(\triangle \mathrm{DPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$
or, $\operatorname{ar}(\triangle \mathrm{BPQ})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{ABC})$

Question 5:

$A B C D$ is a square. E and F are respectively the mid-points of $B C$ and $C D$. If R is
the mid-point of EF, prove that $\operatorname{ar}(\triangle A E R)=\operatorname{ar}(\triangle A F R)$.

Answer:
Given In square $A B C D, E$ and F are the mid-points of $B C$ and $C D$ respectively. Also, R is the mid-point of $E F$.
To prove $\quad \operatorname{ar}(A E R)=\operatorname{ar}(A F R)$.
Construction Draw AN $\perp E F$.

$$
\text { Proof } \because \quad \operatorname{ar}(\triangle A E R)=\frac{1}{2} \times \text { Base } \times \text { Height } \quad \begin{aligned}
& =\frac{1}{2} \times E R \times A N \\
& =\frac{1}{2} \times F R \times A N
\end{aligned}
$$

$$
=\operatorname{ar}(\Delta A F R)
$$

$[\because R$ is the mid-point of $E F$, so $E R=F R]$ Hence proved.

Question 6:

O is any point on the diagonal PR of a parallelogram PQRS (figure). Prove that $\operatorname{ar}(\triangle P S O)=\operatorname{ar}(\triangle P Q O)$.

Answer:

In the parallelogram PQRS, O is any point on the diagonal PR. (Given)
To prove: $\operatorname{ar}(\triangle \mathrm{PSO})=\operatorname{ar}(\triangle \mathrm{PQO})$.
Construction: Join SQ which intersects $P R$ at B.
proof: We know that diagonals of a parallelogram bisect each other, so B is the midpoint of SQ.
Here, PB is a median of $\operatorname{ar}(\triangle \mathrm{QPS})$ and we know that a median of a triangle divides it into two triangles of equal area.
Thus, $\operatorname{ar}(\triangle \mathrm{BPQ})=\operatorname{ar}(\triangle \mathrm{BPS})$
Also, OB is the median of $\operatorname{ar}(\triangle \mathrm{OSQ})$,
$\operatorname{ar}(\triangle \mathrm{OBQ})=\operatorname{ar}(\triangle \mathrm{OBS})$.
On adding eq(1) and (2) we get,
$\operatorname{ar}(\triangle \mathrm{BPQ})+\operatorname{ar}(\triangle \mathrm{OBQ})=\operatorname{ar}(\triangle \mathrm{BPS})=\operatorname{ar}(\triangle \mathrm{OBS})$.
or, $\operatorname{ar}(\triangle \mathrm{PSO})=\operatorname{ar}(\triangle \mathrm{PQO})$.

Question 7:

$A B C D$ is a parallelogram in which $B C$ is produced to E such that $C E=B C$. AE intersects $C D$ at F

If $\operatorname{ar}(\triangle D F B)=3 \mathrm{~cm}^{2}$, then find the area of the parallelogram $A B C D$.

Answer: Given, ABCD is a parallelogram and $\mathrm{CE}=\mathrm{BC}$ i.e., C is the midpoint of BE Also, ar($\triangle D F B)=3 \mathrm{~cm}^{2}$
Now, $\triangle \mathrm{ADF}$ and $\triangle \mathrm{DFB}$ are on the same base DF and between parallels $C D$ and $A B$ then, $\operatorname{ar}(\triangle \mathrm{ADF})=\operatorname{ar}(\triangle \mathrm{DFB})=3 \mathrm{~cm}^{2}$
In $\triangle A B E$, by the converse of midpoint theorem, $E F=A F$ [C is the midpoint of $B E]$
In $\triangle \mathrm{ADF}$ and $\triangle \mathrm{ECF}, \angle \mathrm{AFD}=\angle \mathrm{CFE}$ [vertically opposite angles]
$A F=E F[$ from eq(2)]
And, $\angle \mathrm{DAF}=\angle \mathrm{CEF}$ [Since, $\mathrm{BE} \| \mathrm{AD}$ and AE is transversal, then alternate interior angles are equal]
Therefore, $\triangle A D F \cong \triangle E C F$ [by ASA congruency] then, $\operatorname{ar}(\triangle \mathrm{ADF})=\operatorname{ar}(\triangle \mathrm{CFE})$ [Since, congruent figures have equal area]
Therefore, $\operatorname{ar}(\triangle C F E)=\operatorname{ar}(\triangle A D F)=3 \mathrm{~cm}^{2}[e q(1)]$

Now, in ($\triangle B F E$), C is the midpoint of $B E$ then,
CF is the median of ($\triangle \mathrm{BFE}$)
therefore, $\operatorname{ar}(\triangle C E F)=\operatorname{ar}(\triangle \mathrm{BFC})$ [median of a triangle divides it into two trinagles of equal area]
or, $\operatorname{ar}(\triangle \mathrm{BFC})=3 \mathrm{~cm}^{2}$
Now, $\operatorname{ar}(\triangle \mathrm{BDC})=\operatorname{ar}(\triangle \mathrm{DFB})+\operatorname{ar}(\triangle \mathrm{BFC})$

$$
=3+3=6 \mathrm{~cm}^{2} \text { [from eq. (1) and (4)] }
$$

we know that, diagonal of a parallelogram divides it into two congruent triangle of equal areas. Therefore, ar parallelogram $A B C D=2 \operatorname{ar}(\triangle B D C)=2(6)=12 \mathrm{~cm}^{2}$

Hence, the area of parallelogram $A B C D=12 \mathrm{~cm}^{2}$

Question 8:

In trapezium $A B C D, A B| | D C$ and L is the mid-point of $B C$. Through L, a line $P Q$ $\| A D$ has been drawn which meets $A B$ in P and $D C$ produced in Q. Prove that $\operatorname{ar}(A B C D)=\operatorname{ar}(A P Q D)$.

$\therefore \mathrm{BL}=\mathrm{CL}$
Answer:

Given In trapezium $A B C D, A B \| D C, D C$ produced in Q and L is the mid-point of $B C$.

```
\therefore BL=CL
To prove ar (ABCD)=ar (APQD)
Proof Since, DC produced in Q and AB|DC.
```

So, $D Q \| A B$
In $\triangle C L Q$ and $\triangle B L P$,

	$C L=B L$, L is the mid-point of $B C]$
	$\angle L C Q=\angle L B P$	[alternate	les as $B C$ is a transversal]
	$\angle C Q L=\angle L P B$	[alternate	les as $P Q$ is a transversal]
\therefore	$\triangle C L Q \cong \triangle B L P$		[by AAS congruence rule]
Then,	$\operatorname{ar}(\triangle C L Q)=\operatorname{ar}(\triangle B L P)$		(i)

Now, $\quad \operatorname{ar}(A B C D)=\operatorname{ar}(A P Q D)-\operatorname{ar}(\triangle C Q L)+\operatorname{ar}(\triangle B L P)$

$$
=\operatorname{ar}(A P Q D)-\operatorname{ar}(\triangle B L P)+\operatorname{ar}(\triangle B L P)
$$

$$
\Rightarrow \quad \text { ar }(A B C D)=\operatorname{ar}(A P Q D)
$$

Hence proved.

Exercise 9.4: Long Answer Type Questions

Question 1:

A point E is taken on the side BC of a parallelogram ABCD. AE and DC are produced to meet at F. Prove that ar $(\triangle A D F)=\operatorname{ar}(\triangle B F C)$.

Answer: Given $A B C D$ is a parallelogram and E is a point on $B C$. $A E$ and $D C$ are produced to meet at F.
$A B \| C D$ and $B C \| A D$

$$
\begin{array}{ll}
\therefore & A B \| C D \text { and } B C \| A D \tag{i}\\
\text { To prove } & \operatorname{ar}(\triangle A D F)=\operatorname{ar}(A B F C)
\end{array}
$$

Construction Join $A C$ and $D E$.
Proof Since, $A C$ is a diagonal of parallelogram $A B C D$.
So,

$$
\begin{equation*}
\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D) \tag{ii}
\end{equation*}
$$

Since, $\triangle A B F$ and $\triangle A B C$ are on the same base $A B$ and between the same parallels $A B$ and DF.
[since, $A B \| D C$ and $D C$ produced to F]
$\therefore \quad \operatorname{ar}(\triangle A B F)=\operatorname{ar}(\triangle A B C)$
From Eqs. (ii) and (iii),

$$
\operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A C D)=\operatorname{ar}(\triangle A B F)
$$

On subtracting ar ($\triangle A B E$) from both sides of Eq. (iii), we get

$$
\begin{align*}
& \operatorname{ar}(\triangle A B F)-\operatorname{ar}(\triangle A B E) & =\operatorname{ar}(\triangle A B C)-\operatorname{ar}(\triangle A B E) \\
\Rightarrow & \operatorname{ar}(\triangle B E F) & =\operatorname{ar}(\triangle A E C) \tag{iv}\\
\text { Now, } & \operatorname{ar}(A E C D) & =\operatorname{ar}(A C D)+\operatorname{ar}(A E C) \\
& & =\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle B E F)
\end{align*}
$$

[from Eqs. (ii) and (iv)]
On adding ar ($\triangle C E F$) both sides, we get

$$
\begin{aligned}
& \operatorname{ar}(A E C D)+\operatorname{ar}(\triangle C E F) \\
& \quad=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle B E F)+\operatorname{ar}(\triangle C E F)
\end{aligned}
$$

$$
\Rightarrow \quad \operatorname{ar}(\triangle A D F)=\operatorname{ar}(A B F C)
$$

Question 2:

The diagonals of a parallelogram $A B C D$ intersect at a point O. Through O, a line is drawn to intersect $A D$ at P and $B C$ at Q. Show that $P Q$ divides the parallelogram into two parts of equal area.

Answer:
Given In a parallelogram $A B C D$, diagonals interect at O and draw a line $P Q$, which intersects $A D$ and $B C$.
To prove $P Q$ divides the parallelogram $A B C D$ into two parts of equal area.
i.e.,
$\operatorname{ar}(A B Q P)=\operatorname{ar}(C D P Q)$

Proof We know that, diagonals of a parallelogram bisect each other.
$\therefore \quad O A=O C$ and $O B=O D$
In $\triangle A O B$ and $\triangle C O D$,
and $\angle A O B=\angle C O D \quad$ [vertically opposite angles]
$\therefore \quad \triangle A O B \cong \triangle C O D \quad$ [by SAS congruence rule]
Then, $\quad \operatorname{ar}(\triangle A O B)=\operatorname{ar}(\triangle C O D)$
[since, congruent figures have equal area]
Now, in $\triangle A O P$ and $\triangle C O Q$.

	$\angle P A O$	$=\angle O C Q$	
		$O A$	$=O C$
and	$\angle A O P$	$=\angle C O Q$	
\therefore	$\triangle A O P$	$\cong \triangle C O Q$	
\therefore	ar $(\triangle A O P)$	$=$ ar $(\triangle C O Q)$	

[alternate interior angles]
[from Eq. (i)] [vertically opposite angles]
[by ASA congruence rule]
[since, congruent figures ha
Similarly, $\operatorname{ar}(\triangle P O D)=\operatorname{ar}(\triangle B O Q)$
Now,
$\operatorname{ar}(A B Q P)=\operatorname{ar}(\triangle C O Q)+\operatorname{ar}(\triangle C O D)+\operatorname{ar}(\triangle P O D)$

$$
=\operatorname{ar}(\triangle A O P)+\operatorname{ar}(\triangle A O B)+\operatorname{ar}(\triangle B O Q)
$$

[from Eqs. (ii), (iii) and (iv)]
$\Rightarrow \quad \operatorname{ar}(A B Q P)=\operatorname{ar}(C D P Q)$
Hence proved.

Question 3:

The median BE and CF of a triangle ABC intersect at G. Prove that the area of $\triangle G B C=$ area of the quadrilateral AFGE.

Answer:

Given In $\triangle A B C$, medians $B E$ and $C F$ intersect each other at G.
To prove $\quad \operatorname{ar}(\triangle G B C)=\operatorname{ar}(A F G E)$
Proof Since, $B E$ is the median of $\triangle A B C$ and we know that a median of a triangle divides it into two parts of equal area.

$$
\begin{array}{ll}
\text { So, } & \operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle C B E) \\
\Rightarrow & \operatorname{ar}(\triangle A B E)=\frac{1}{2} \operatorname{ar}(\triangle A B C)
\end{array}
$$

Similarly, $C F$ is the median of $\triangle A B C$.
Then,
$\operatorname{ar}(\triangle A C F)=\operatorname{ar}(\triangle B C F)$
$\Rightarrow \quad \operatorname{ar}(\triangle B C F)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
From Eqs. (i) and (ii),

$$
\begin{equation*}
\operatorname{ar}(\triangle A B E)=\operatorname{ar}(\triangle B C F) \tag{iii}
\end{equation*}
$$

On subtracting ar ($\triangle G B F$) from both sides of Eq. (iii), we get

$$
\begin{array}{cc}
& \operatorname{ar}(\triangle A B E)-\operatorname{ar}(\triangle G B F)=\operatorname{ar}(\triangle B C F)-\operatorname{ar}(\triangle G B F) \\
\Rightarrow & \operatorname{ar}(A F G E)=\operatorname{ar}(G B C)
\end{array}
$$

Hence proved.

Question 4:

In figure, $C D \| A E$ and $C Y|\mid B A$. Prove that ar $(\triangle C B X)=\operatorname{ar}(\triangle A X Y)$.

Answer:
Given In figure, CD\|AE
and CY || BA
To prove ar $(\triangle C B X)=\operatorname{ar}(\triangle A X Y)$.
Proof We know that triangles on the same base and between the same parallels are equal. in areas.
Here, $\triangle A B Y$ and $\triangle A B C$ both lie on the same base $A B$ and between the same parallels $C Y$ and $B A$.
$\operatorname{ar}(\triangle A B Y)=\operatorname{ar}(\triangle A B C)$
$\mathrm{OR}, \operatorname{ar}(\mathrm{ABX})+\operatorname{ar}(\mathrm{AXY})=\operatorname{ar}(\mathrm{ABX})+\operatorname{ar}(\mathrm{CBX})$
$O R$, $\operatorname{ar}(A X Y)=\operatorname{ar}(C B X)$ [eliminating ar $(A B X)$ from both sides]

Question 5:

$A B C D$ is trapezium in which $A B|\mid D C, D C=30 \mathrm{~cm}$ and $A B=50 \mathrm{~cm}$. If X and Y are, respectively the mid-points of $A D$ and $B C$, prove that $\operatorname{ar}(D C Y X)=7 / 9$ ar (XYBA).
Answer:
Given In a trapezium $A B C D, A B \| D C, D C=30 \mathrm{~cm}$ and $A B=50 \mathrm{~cm}$.
Also, X and Y are respectively the mid-points of $A D$ and $B C$.

To prove

$$
\operatorname{ar}(D C Y X)=\frac{7}{9} \operatorname{ar}(X Y B A)
$$

Construction Join $D Y$ and extend it to meet produced $A B$ at P.
Proof $\ln \triangle D C\rangle Y$ and $\triangle P B Y$,
and
\therefore Then,
But

$$
\begin{aligned}
C Y & =B Y \\
\angle D C Y & =\angle P B Y \\
\angle 2 & =\angle 3 \\
\triangle D C Y & \cong P B Y \\
D C & =B P
\end{aligned}
$$

[since, Y is the mid-point of $B C$] [alternate interior angles] [vertically opposite angles] [by ASA congruence rule] [by CPCT]

$$
D C=30 \mathrm{~cm}
$$

\therefore

$$
D C=B P=30 \mathrm{~cm}
$$

Now,

$$
A P=A B+B P
$$

$$
=50+30=80 \mathrm{~cm}
$$

In $\triangle A D P$, by mid-point theorem,

$$
X Y=\frac{1}{2} A P=\frac{1}{2} \times 80=40 \mathrm{~cm}
$$

Let distance between $A B, X Y$ and $X Y, D C$ is $h \mathrm{~cm}$.
Now, area of trapezium $D C Y X=\frac{1}{2} h(30+40)$
[\because area of trapezium $=\frac{1}{2}$ sum of parallel sides \times distance between them]

$$
=\frac{1}{2} h(70)=35 h \mathrm{~cm}^{2}
$$

Similarly, area of trapezium XYBA $=\frac{1}{2} h(40+50)=\frac{1}{2} h \times 90=45 h \mathrm{~cm}^{2}$

$$
\begin{array}{ll}
\therefore & \frac{\operatorname{ar}(D C Y X)}{\operatorname{ar}(X Y B A)}=\frac{35 h}{45 h}=\frac{7}{9} \\
\Rightarrow & \operatorname{ar}(D C Y X)=\frac{7}{9} \operatorname{ar}(X Y B A)
\end{array}
$$

Question 6:

In $\triangle A B C$, if L and M are the points on $A B$ and $A C$, respectively such that $L M$ || $B C$. Prove that $\operatorname{ar}(\triangle L O B)=\operatorname{ar}(\triangle M O C)$.

Answer:
Given $\operatorname{In} \triangle A B C, L$ and M are points on $A B$ and $A C$ respectively such that $L M|\mid B C$.

To prove
$\operatorname{ar}(\triangle L O B)=\operatorname{ar}(\triangle M O C)$
Proof We know that, triangles on the same base and between the same parallels are equal in area.
Hence, $\triangle L B C$ and $\triangle M B C$ lie on the same base $B C$ and between the same parallels $B C$ and LM.
So, $\quad \operatorname{ar}(\triangle / B C)=\operatorname{ar}(\triangle M B C)$
$\Rightarrow \quad \operatorname{ar}(\triangle L O B)+\operatorname{ar}(\triangle B O C)=\operatorname{ar}(\triangle M O C)+\operatorname{ar}(\triangle B O C)$
On eliminating D ar ($\triangle B O C$) from both sides, we get

$$
\operatorname{ar}(\triangle L O B)=\operatorname{ar}(\triangle M O C)
$$

Hence proved.

Question 7:

In the figure, $A B C D E$ is any pentagon. $B P$ drawn parallel to $A C$ meets $D C$ produced at P and EQ drawn parallel to AD meets CD produced at Q. Prove that ar $(A B C D E)=\operatorname{ar}(\triangle A P Q)$.

Answer:
Given that ABCDE is a pentagon.
$B P \| A C$ and $E Q \| A D$.
To prove ar (ABCDE) = ar (APQ)
Proof We know that triangles on the same base and between the same parallels are equal in area.
Here, $\triangle A D Q$ and $\triangle A D E$ lie on the same base $A D$ and between the same parallels $A D$ and $E Q$.
So, ar ($\triangle \mathrm{ADQ}$) $=\operatorname{ar}(\triangle \mathrm{ADE})$...(i)
Similarly, $\triangle A C P$ and $\triangle A C B$ lie on the same base $A C$ and between the same parallels $A C$ and $B P$.

So, $\operatorname{ar}(\triangle A C P)=\operatorname{ar}(\triangle A C B) \ldots$ (ii)
On adding Eqs. (i) and (ii), we get
$\operatorname{ar}(\triangle \mathrm{ADQ})+\operatorname{ar}(\triangle \mathrm{ACP})=\operatorname{ar}(\triangle \mathrm{ADE})+\operatorname{ar}(\triangle \mathrm{ACB})$
On adding ar ($\triangle A C D$) on both sides, we get
$\operatorname{ar}(\triangle \mathrm{ADQ})+\operatorname{ar}(\triangle \mathrm{ACP})+\operatorname{ar}(\triangle \mathrm{ACD})=\operatorname{ar}(\triangle \mathrm{ADE})+\operatorname{ar}(\triangle \mathrm{ACB})+\operatorname{ar}(\triangle \mathrm{ACD})$
$=>\operatorname{ar}(\triangle A P Q)=\operatorname{ar}(A B C D E)$ Hence proved.

Question 8:

If the medians of a AABC intersect at G, then show that $\operatorname{ar}(\triangle A G B)=\operatorname{ar}(\triangle A G C)$ $=\operatorname{ar}(\triangle B G C)=1 / 3 \operatorname{ar}(\triangle A B C)$.
Thinking Process
Use the property that the median of a triangle divides it into two triangles of equal area.
Further, apply the above property by considering different triangles and prove the required result.

Answer: Given In $\triangle A B C, A D, B E$ and $C F$ are medians and intersect at G.

To prove: $\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\triangle \mathrm{AGC})=\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
Proof: We know that a median of a triangle divides it into two triangles of equal area. In ($\triangle \mathrm{ABC}), \mathrm{AD}$ is a median.
Therefore, $\operatorname{ar}(\triangle \mathrm{ABD})=\operatorname{ar}(\triangle \mathrm{ACD})$
In ($\triangle \mathrm{BGC})$, GD is a median,
$\operatorname{ar}(\Delta \mathrm{GBD})=\operatorname{ar}(\Delta \mathrm{GCD})$
On subtracting eq(2) from eq(1) we get,
$\operatorname{ar}(\triangle \mathrm{ABD})-\operatorname{ar}(\Delta \mathrm{GDB})=\operatorname{ar}(\triangle \mathrm{ACD})-\operatorname{ar}(\Delta \mathrm{GCD})$
or, $\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{AGC})$

Similarly, $\operatorname{ar}(\triangle \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC})$
From eq(3) and (4),
$\operatorname{ar}(\Delta \mathrm{AGB})=\operatorname{ar}(\Delta \mathrm{BGC})=\operatorname{ar}(\Delta \mathrm{AGC})$

$$
\begin{align*}
& \text { Now, } \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle A G B)+\operatorname{ar}(\Delta \mathrm{BGC})+\operatorname{ar}(\Delta \mathrm{AGC}) \\
& \text { or, } \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{AGB})+\operatorname{ar}(\Delta \mathrm{AGB})+\operatorname{ar}(\Delta \mathrm{AGB})[\text { From eq(} 5)] \\
& \text { or, } \operatorname{ar}(\triangle \mathrm{ABC})=3 \operatorname{ar}(\Delta \mathrm{AGB}) \\
& \text { or, } \operatorname{ar}(\triangle \mathrm{AGB})=\frac{1}{3} \operatorname{ar}(\Delta \mathrm{ABC}) \ldots \tag{6}
\end{align*}
$$

From eq(5) and (6),
$\operatorname{ar}(\Delta \mathrm{BGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$
$\operatorname{ar}(\triangle \mathrm{AGC})=\frac{1}{3} \operatorname{ar}(\triangle \mathrm{ABC})$

Question 9:

In figure X and Y are the mid-points of $A C$ and $A B$ respectively, QP || BC and $C Y Q$ and $B X P$ are straight lines. Prove that $\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$.

Thinking Process

1. Firstly, use the theorem that joining the mid-points of the two sides of a triangle is parallel to the third side.
2. Further, use the theorem that triangles on the same base and between the same
parallels are equal in area. Use this theorem by considering different triangles and prove the required result

Solution:

Given X and Y are the mid-points of $A C$ and $A B$ respectively. Also, QP\|BC and CYQ, BXP are straight lines.
To prove ar $(\triangle A B P)=$ ar ($\triangle A C Q$)
Proof Since, X and Y are the mid-points" of $A C$ and $A B$ respectively.
So, XY || BC
We know that triangles on the same base and between the same parallels are equal in area. Here, $\triangle B Y C$ and $\triangle B X C$ lie on the same base $B C$ and between the same parallels BC and XY.
So, ar $(\triangle B Y C)=\operatorname{ar}(\triangle B X C)$
On subtracting ar ($\triangle B O C$)from both sides, we get
ar $(\triangle \mathrm{BYC})-\operatorname{ar}(\triangle \mathrm{BOC})=\operatorname{ar}(\triangle \mathrm{BXC})-\mathrm{ar}(\triangle \mathrm{BOC})$
=» ar ($\triangle \mathrm{BOY}$) = ar ($\triangle \mathrm{COX}$)
On adding ar ($\triangle \mathrm{XOY}$) on both sides, we get
$\operatorname{ar}(\triangle \mathrm{SOY})+\operatorname{ar}(\triangle \mathrm{XOY})=\operatorname{ar}(\triangle \mathrm{COX})+\operatorname{ar}(\triangle \mathrm{XOY})$
=> ar ($\triangle \mathrm{BYX}$) = ar ($\triangle \mathrm{CXY}$)
Hence, we observe that quadrilaterals XYAP and $Y X A Q$ are on the same base $X Y$ and between the same parallels $X Y$ and $P Q$.
ar $(X Y A P)=\operatorname{ar}(Y X A Q) \ldots$ (ii)
On adding Eqs. (i) and (ii), we get
$\operatorname{ar}(\triangle \mathrm{BYX})+\operatorname{ar}(\mathrm{XYAP})=\operatorname{ar}(\triangle \mathrm{CXY})+\operatorname{ar}(Y X A Q)$
$=>\operatorname{ar}(\triangle A B P)=\operatorname{ar}(\triangle A C Q)$ Hence proved.

Question 10:

In the figure, ABCD and AEFD are two parallelograms. Prove that ar (APEA) = $\operatorname{ar}(A Q F O)$.

Answer:

Given, ABCD and AEFD are two parallelograms.
To prove ar (APEA) = ar (AQFD)
Proof In quadrilateral PQDA,
AP || DQ [since, in parallelogram $A B C D, A B| | C D]$ and $P Q|\mid A D$ [since, in parallelogram AEFD, FE || AD]
Then, quadrilateral PQDA is a parallelogram.
Also, parallelogram PQDA and AEFD are on the same base AD and between the same parallels $A D$ and $E Q$.
ar (parallelogram PQDA) $=\operatorname{ar}($ parallelogram AEFD)

On subtracting ar (quadrilateral APFD) from both sides, we get ar (parallelogram PQDA)- ar (quadrilateral APFD)
$=\operatorname{ar}$ (parallelogram AEFD) $-\operatorname{ar}$ (quadrilateral APFD) $=>\operatorname{ar}($ AQFD $)=\operatorname{ar}($ APEA $)$
Hence proved.

