Chapter 10: Circles

2016

Very Short Answer Type Questions [1 Mark]

Question 1.

From an external point P , tangents PA and PB are drawn to a circle with centre O . If $\angle P A B=50^{\circ}$, then find $\angle A O B$.

Solution:

Given,

$$
\begin{aligned}
\angle \mathrm{PAB} & =50^{\circ} \\
\angle \mathrm{PAB}+\angle \mathrm{OAB} & =90^{\circ}
\end{aligned}
$$

[\because angle between radius OA and tangent PA is 90°]
$\Rightarrow \quad 50^{\circ}+\angle \mathrm{OAB}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{OAB}=90^{\circ}-50^{\circ}=40^{\circ}$

$$
\begin{array}{rlrl}
\text { Now, } & & \mathrm{PA} & =\mathrm{PB} \\
\Rightarrow & & \angle \mathrm{PBA} & =\angle \mathrm{PAB} \\
\Rightarrow & & \angle \mathrm{PBA} & =50^{\circ} \\
\Rightarrow & & \angle \mathrm{PBA}+\angle \mathrm{OBA} & =90^{\circ}\left[\therefore \text { angle between radius } \mathrm{OB} \text { and tangent } \mathrm{PB} \text { is } 180^{\circ}\right] \\
\Rightarrow & 50^{\circ}+\angle \mathrm{OBA} & =90^{\circ} \\
\Rightarrow & \angle \mathrm{OBA}=90^{\circ}-50^{\circ} & =40^{\circ}
\end{array}
$$

Now in $\triangle \mathrm{AOB}$ we have

$$
\Rightarrow \begin{array}{rlrl}
\angle \mathrm{AOB}+\angle \mathrm{ABO}+\angle \mathrm{BAO} & =180^{\circ} \\
\Rightarrow \quad \angle \mathrm{AOB}+40^{\circ}+40^{\circ} & =180^{\circ} \Rightarrow & \angle \mathrm{AOB}=180^{\circ}-80^{\circ}=100^{\circ}
\end{array}
$$

Question 2.

In given figure, PQ is a tangent at a point C to a circle with centre O . If AB is a diameter and $\angle \mathrm{CAB}=30^{\circ}$, find $\angle \mathrm{PCA}$

Solution:

Construction: Join AO.
Given: PQ is tangent. AB is diameter $\angle \mathrm{CAB}=30^{\circ}$.
To Find: $\angle \mathrm{PCA}$
Solution: In $\triangle A O C, \quad A O=C O$
(\because Equal radii)
$\angle \mathrm{CAO}=\angle \mathrm{OCA} \quad(\because$ Angles opposite to equal sides are equal $)$
or $\quad \angle \mathrm{CAB}=\angle \mathrm{OCA}$
But, $\quad \angle \mathrm{CAB}=30^{\circ} \quad$ So, $\angle \mathrm{OCA}=30^{\circ} \quad$ (i)
Since, $\quad \mathrm{OC} \perp \mathrm{PQ}(\because$ Tangent is perpendicular to radius at point of contact $)$
$\Rightarrow \quad \angle \mathrm{PCO}=90^{\circ} \Rightarrow \angle \mathrm{OCA}+\angle \mathrm{PCA}=90^{\circ} \Rightarrow 30^{\circ}+\angle \mathrm{PCA}=90^{\circ}$
$\therefore \quad \angle \mathrm{PCA}=60^{\circ}$

Question 3.

In figure given, $A O B$ is a diameter of a circle with centre O and $A C$ is a tangent to the circle at A. If $\angle B O C=130^{\circ}$, then find $\angle A C O$.

Solution:

$$
\begin{aligned}
\angle \mathrm{AOC}+\angle \mathrm{BOC} & =180^{\circ} \\
{[} & \because \text { Linear Pair Axiom }] \\
\angle \mathrm{AOC}+130^{\circ} & =180^{\circ} \\
\angle \mathrm{AOC} & =180^{\circ}-130^{\circ} \\
\angle \mathrm{AOC} & =50^{\circ}
\end{aligned}
$$

Now,
$\angle \mathrm{OAC}=90^{\circ}$ [angle between radius OA and tangent AC is 90°]
Now, in $\triangle \mathrm{AOC}$,

$$
\begin{aligned}
\angle \mathrm{OAC}+\angle \mathrm{AOC}+\angle \mathrm{ACO} & =180^{\circ} \\
90^{\circ}+50^{\circ}+\angle \mathrm{ACO} & =180^{\circ} \\
\angle \mathrm{ACO} & =180^{\circ}-140^{\circ} \\
\angle \mathrm{ACO} & =40^{\circ}
\end{aligned}
$$

Short Answer Type Questions I [2 Marks]

Question 4.

In given figure, a circle is inscribed in a $\triangle A B C$, such that it touches the sides $A B, B C$ and $C A$ at points D, E and F respectively. If the lengths of sides $A B, B C$ and $C A$ are $12 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm respectively, find the lengths of $A D, B E$ and $C F$

Solution:

Given, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{CA}=10 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$
Let
$\mathrm{AD}=\mathrm{AF}=x \quad[\because$ Tangent drawn from external point to circle are equal]

$$
\begin{aligned}
\therefore \quad \mathrm{DB}=\mathrm{BE} & =12-x \text { and } \mathrm{CF}=\mathrm{CE}=10-x \\
& \mathrm{BC}=\mathrm{BE}+\mathrm{EC} \Rightarrow 8=12-x+10-x
\end{aligned}
$$

$$
\Rightarrow \quad x=7
$$

$\therefore \mathrm{AD}=7 \mathrm{~cm}, \mathrm{BE}=5 \mathrm{~cm}$ and $\mathrm{CF}=3 \mathrm{~cm}$

Question 5.

If given figure, $A P$ and $B P$ are tangents to a circle with centre O, such that $A P=5 \mathrm{~cm}$ and $\angle A P B=60^{\circ}$. Find the length of chord $A B$.

Solution:

In $\triangle \mathrm{APB}$ we have \Rightarrow

Let
then in $\triangle \mathrm{APB}$,

$$
\mathrm{AP}=\mathrm{BP}
$$

$$
\angle \mathrm{PAB}=\angle \mathrm{PBA}
$$

$[\because$ Tangents from an external point are equally inclined to segment joining centre to point]

$$
\angle \mathrm{PAB}=x
$$

$$
\begin{aligned}
x+x+60^{\circ} & =180^{\circ} \\
2 x & =180^{\circ}-60^{\circ}=120^{\circ} \\
x & =60^{\circ}
\end{aligned}
$$

As all three angles of $\triangle \mathrm{APB}$ are 60°. So $\triangle \mathrm{APB}$ is an equilateral triangle.
Hence $\mathrm{AP}=\mathrm{BP}=\mathrm{AB}=5 \mathrm{~cm}$

Question 6.

In figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle, with centre O, in such a way that the sides $A B, B C, C D$ and $D A$ touch the circle at the points P, Q, R and S respectively. Prove that $A B+C D=B C+D A$.

Solution:

We know that tangents drawn to a circle from an outer points are equal.
So,

$$
\begin{aligned}
& \mathrm{AP}=\mathrm{AS}, \mathrm{BP}=\mathrm{BQ} \\
& \mathrm{CR}=\mathrm{CQ} \text { and } \mathrm{DR}=\mathrm{DS} .
\end{aligned}
$$

Now, consider

$$
\begin{aligned}
& & \mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR} & =\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\
\Rightarrow & & \mathrm{AB}+\mathrm{CD} & =\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

Hence proved.

Question 7.

In given figure, from an external point P , two tangents PT and PS are drawn to a circle with centre O and radius r.If $P O=2 r$, show that $\angle O T S=\angle O S T=30^{\circ}$.

Solution:

Let $\angle \mathrm{TOP}=\theta$
In right triangle OTP we have

$$
\therefore \quad \cos \theta=\frac{\mathrm{OT}}{\mathrm{OP}}=\frac{r}{2 r}=\frac{1}{2}=\cos 60^{\circ} \Rightarrow \theta=60^{\circ}
$$

Hence $\angle \mathrm{TOS}=2 \times 60=120^{\circ} \quad[\because \angle \mathrm{TOP}=\angle \mathrm{POS}$ as angles opposite to equal tangent are equal]
In Δ OTS, we have

$$
\mathrm{OT}=\mathrm{OS}
$$

[\because Equal radii]
$\Rightarrow \quad \angle \mathrm{OTS}=\angle \mathrm{OST} \quad[\because$ Angle opposite to equal sides are equal $]$
In $\triangle \mathrm{OTS}$,

$$
\begin{array}{rlrl}
\angle \mathrm{OTS}+\angle \mathrm{OST}+\angle \mathrm{TOS} & =180^{\circ} \\
2 \angle \mathrm{OST} & =60^{\circ} \\
\therefore \quad & \angle \mathrm{OST} & =\angle \mathrm{OTS}=30^{\circ}
\end{array}
$$

Hence proved.

Question 8.

In given figure, from a point P, two tangents PT and PS are drawn to a circle with centre O such that $\angle S P T=120^{\circ}$, Prove that $\mathrm{OP}=2 \mathrm{PS}$

Solution:

Let $\mathrm{PT}=x=\mathrm{PS} \quad[\because$ Tangent drawn from external point to circle are equal]

$$
\angle \mathrm{SPT}=120^{\circ}
$$

In $\triangle \mathrm{OTP}$ and $\triangle \mathrm{OSP}$,

$$
\angle \mathrm{OTP}=\angle \mathrm{OSP}
$$

[\because each equal to 90°, since tangent perpendicular r radius]

$$
\mathrm{OT}=\mathrm{OS}
$$

$$
\mathrm{OP}=\mathrm{OP}
$$

$\Rightarrow \quad \triangle \mathrm{OSP} \cong \triangle \mathrm{OTP} \quad[\because$ By SAS congruence rule $]$
$\therefore \quad \angle \mathrm{TPO}=\angle \mathrm{SPO} \quad[\because$ By CPCT $]$
$\Rightarrow \quad \angle \mathrm{TPO}=\frac{1}{2} \angle \mathrm{SPT}=\frac{1}{2} \times 120=60^{\circ}$
In $\triangle \mathrm{OTP}$,

$$
\frac{\mathrm{OP}}{x}=\operatorname{Sec} 60^{\circ}
$$

\Rightarrow
Hence proved.

$$
\frac{\mathrm{OP}}{x}=2 \Rightarrow \mathrm{OP}=2 x \Rightarrow \mathrm{OP}=2 \mathrm{PS}
$$

Question 9.

In given figure, there are two concentric circles of radii 6 cm and 4 cm with centre O. If $A P$ is a tangent to the larger circle and $B P$ to the smaller circle and length of $A P$ is 8 cm , find the length of $B P$

Solution:

In $\triangle \mathrm{OAP}$,

$$
\Rightarrow \quad O P=10 \mathrm{~cm}
$$

$$
\text { In } \triangle \mathrm{OBP},
$$

$$
\begin{aligned}
\mathrm{OA} & =6 \mathrm{~cm}[\because \text { Given radius }] \\
\mathrm{OB} & =4 \mathrm{~cm}[\because \text { Given radius }] \\
\mathrm{AP} & =8 \mathrm{~cm} \\
\mathrm{OP}^{2} & =\mathrm{OA}^{2}+\mathrm{AP}^{2}=36+64=100[\because \text { Pythagoras theorem }] \\
\mathrm{OP} & =10 \mathrm{~cm} \\
\mathrm{BP}^{2} & =\mathrm{OP}^{2}-\mathrm{OB}^{2}=100-16=84[\because \text { Pythagoras theorem }] \\
\mathrm{BP} & =2 \sqrt{21} \mathrm{~cm}
\end{aligned}
$$

Question 10.

Prove that the lengths of tangents drawn from an external point to a circle are equal Solution:
Given: A circle $C(\mathrm{O}, r), \mathrm{P}$ is a point outside the circle and PA and PB are tangents to a circle.
To Prove: PA = PB
Construction: Draw OA, OB and OP.
Proof: Consider triangles OAP and OBP.

$$
\begin{equation*}
\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ} \tag{i}
\end{equation*}
$$

[Radius is perpendicular to the tangent at the point of contact]

$$
\begin{equation*}
\mathrm{OA}=\mathrm{OB}(\text { radii }) \tag{ii}
\end{equation*}
$$

OP is common
[from (i), (ii) and (iii)]
Hence,

$$
\begin{align*}
\Delta \mathrm{OAP} & \cong \Delta \mathrm{OBP}(\mathrm{RHS}) \tag{iii}\\
\mathrm{AP} & =\mathrm{BP} \tag{СРСТ}
\end{align*}
$$

Question 11.

In given figure, O is the centre of a circle of radius 5 cm . T is a point such that $O T=13 \mathrm{~cm}$ and OT intersects circle at E. If $A B$ is a tangent to the circle at E, find the length of

$A B$, where TP and TQ are two tangents to the circle.

Solution:
In $\triangle \mathrm{OPT}$,

$$
\mathrm{OP}^{2}+\mathrm{PT}^{2}=\mathrm{OT}^{2} \quad[\because \text { Pythagoras theorem }]
$$

$$
\begin{aligned}
\mathrm{PT} & =\sqrt{\mathrm{OT}^{2}-\mathrm{OP}^{2}} \\
& =\sqrt{169-25}=12 \mathrm{~cm}
\end{aligned}
$$

and

$$
\mathrm{TE}=\mathrm{OT}-\mathrm{OE}=13-5=8 \mathrm{~cm}
$$

Let

$$
\mathrm{PA}=\mathrm{AE}=x
$$

[tangent from outer point A]
In \triangle TEA,

$$
\mathrm{TE}^{2}+\mathrm{EA}^{2}=\mathrm{TA}^{2} \quad[\because \text { Pythagoras theorem }]
$$

$$
(8)^{2}+(x)^{2}=(12-x)^{2}
$$

$$
64+x^{2}=(12-x)^{2}
$$

$$
\Rightarrow \quad 64+x^{2}=144+x^{2}-24 x
$$

$$
\Rightarrow \quad 80=24 x \Rightarrow x=3.3 \mathrm{~cm}
$$

Thus $\mathrm{AB}=2 \times 3.3 \mathrm{~cm}=6.6 \mathrm{~cm}$
$[\because \mathrm{AE}=\mathrm{EB}$, as AB is tangent to circle at E$]$

Question 12.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Solution:

Given: A circle $C(O, r)$ and a tangent $A B$ at a point P.
To prove: $\mathrm{OP} \perp \mathrm{AB}$
Construction: Take any point Q other than P on the tangent AB .
Join OQ, intersecting circle at R .
Proof: We have,

$$
\mathrm{OP}=\mathrm{OR}
$$

[Radii]

$$
\mathrm{OQ}=\mathrm{OR}+\mathrm{RQ}
$$

$\therefore \quad \mathrm{OQ}>\mathrm{OR} \Rightarrow \mathrm{OQ}>\mathrm{OP}$
$[\because \mathrm{OR}=\mathrm{OP}=$ radius $]$
Thus, $\mathrm{OP}<\mathrm{OQ}$, i.e. OP is shorter than any other segment joining O to any point of AB .
But among all line segments, joining point O to point on $A B$, shortest one is perpendicular from O on AB .
Hence, $\quad O P \perp A B$

Question 13.

In given figure, two equal circles, with centres O and O^{\prime}, touch each other at X . OO' produced meets the circle with centre O^{\prime} at A. $A C$ is tangent to the circle with centre O , at the point C . O'D is perpendicular to $A C$. Find the value of DO'/CO.

Solution:

AC is tangent to the circle with centre O .
In $\triangle \mathrm{ADO}^{\prime}$ and $\triangle \mathrm{ACO}, \quad \angle \mathrm{ADO}^{\prime}=\angle \mathrm{ACO}$ $\angle \mathrm{DAO}=\angle \mathrm{CAO}$

\therefore By AA criterion, $\quad \frac{\mathrm{AO}^{\prime}}{\mathrm{AO}}=\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}} \quad[\because$ corresponding parts of similar triangle $]$

$$
\mathrm{AO}=\mathrm{AO}^{\prime}+\mathrm{O}^{\prime} \mathrm{X}+\mathrm{XO}=r+r+r=3 r
$$

$$
\frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}=\frac{r}{3 r}
$$

$$
\left[\therefore \mathrm{AO}=\mathrm{AO}^{\prime}+\mathrm{O}^{\prime} \mathrm{X}+\mathrm{XO}=3 \mathrm{AO}\right]
$$

$$
\Rightarrow \quad \frac{\mathrm{DO}^{\prime}}{\mathrm{CO}}=\frac{1}{3}
$$

Question 14.

In given figure, $A B$ is a chord of a circle, with centre O, such that $A B=16 \mathrm{~cm}$ and radius of circle is 10 cm . Tangents at A and B intersect each other at P. Find the length of PA

Solution:

Let

$$
\text { PL }=x
$$

As OP is perpendicular bisector of $A B$. Then

$$
\mathrm{AL}=\mathrm{BL}=8 \mathrm{~cm}
$$

In $\triangle \mathrm{ALO}$,

$$
\mathrm{OL}^{2}=\mathrm{OA}^{2}-\mathrm{AL}^{2}=10^{2}-8^{2}=36 \Rightarrow \mathrm{OL}=6 \mathrm{~cm}
$$

$$
\mathrm{AP}^{2}=\mathrm{OP}^{2}-\mathrm{OA}^{2} \quad[\because \text { Pythagoras theorem }]
$$

In $\triangle \mathrm{OAP}$,

$$
\mathrm{AP}^{2}=(x+6)^{2}-10^{2}
$$

$$
\mathrm{AP}^{2}=\mathrm{AL}^{2}+\mathrm{PL}^{2}
$$

In $\triangle \mathrm{ALP}$,

$$
\mathrm{AP}^{2}=x^{2}+64
$$

Now,

$$
(x+6)^{2}-10^{2}=x^{2}+64
$$

$$
x^{2}+12 x+36-100=x^{2}+64
$$

$$
\Rightarrow \quad 12 x=128
$$

$$
\Rightarrow
$$

$$
x=\frac{128}{12}
$$

$$
=\frac{32}{3} \mathrm{~cm}
$$

From \triangle ALP,

$$
\begin{aligned}
\mathrm{AP}^{2} & =\left(\frac{32}{3}\right)^{2}+64 \\
& =\frac{1024}{9}+64 \\
& =\frac{1024+576}{9} \mathrm{~cm} \\
\mathrm{AP}^{2} & =\frac{1600}{9} \mathrm{~cm} \\
\mathrm{AP} & =\frac{40}{3} \mathrm{~cm}=13.3 \mathrm{~cm}
\end{aligned}
$$

2015

Very Short Answer Type Questions [1 Mark

Question 15.

In figure, PA and PB are tangents to the circle with centre O such that $\angle \mathrm{APB}=50^{\circ}$. Write the measure of $\angle O A B$

Solution:

Join OB.
\because PA and PB are tangents to the circle drawn from an external point P. We know that, tangent is perpendicular r to radius.

$$
\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ}
$$

Then, $\angle \mathrm{OAP}+\angle \mathrm{APB}+\angle \mathrm{OBP}+\angle \mathrm{AOB}=360^{\circ}$
$\therefore \quad \angle \mathrm{APB}+\angle \mathrm{AOB}=180^{\circ}$
$\Rightarrow \quad 50^{\circ}+\angle \mathrm{AOB}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{AOB}=130^{\circ}$
In $\triangle \mathrm{OAB}$,
$O A=O B$

$$
\begin{array}{rlrl}
\Rightarrow & & \angle \mathrm{A} & =\angle \mathrm{B}=x(\text { say })(\because \text { angles opposite to equal sides are equal) } \\
\Rightarrow & & \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{AOB} & =180^{\circ} \\
\Rightarrow & x+x+130^{\circ} & =180^{\circ} \\
\Rightarrow & & 2 x & =50^{\circ} \\
& \therefore & x & =25^{\circ} \\
& & \because \text { ASP of triangles) } \\
& & \angle \mathrm{OAB} & =25^{\circ}
\end{array}
$$

Question 16.

Find the relation between x and y if the points $A(x, y), B(-5,7)$ and $C(-4,5)$ are collinear
Solution:
$\because \mathrm{A}, \mathrm{B}$ and C are collinear. Area of triangle $=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
So,

$$
\operatorname{ar}(\triangle \mathrm{ABC})=0
$$

$$
\therefore \quad \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0
$$

$$
\begin{array}{r}
\frac{1}{2}[x(7-5)+(-5)(5-y)+(-4)(y-7)]=0 \\
2 x-25+5 y-4 y+28=0
\end{array}
$$

$\Rightarrow \quad 2 x+y+3=0$. Required relation between x and y.

Question 17.

Two concentric circles of radii a and $b(a>b)$ are given. Find the length of the chord of the larger circle which touches the smaller circle.
Solution:
$A B$ is tangent at C to circle $C(O, b)$

$$
\begin{array}{lrl}
\therefore & \mathrm{OC} & \perp \mathrm{AB} \\
\therefore & \angle \mathrm{OCB} & \perp 90^{\circ} \\
\Rightarrow & \mathrm{AC} & =\mathrm{BC} \Rightarrow \mathrm{AB}=2 \mathrm{AC} \\
& \\
\text { Now, in } \triangle \mathrm{OCA}, & (\because \text { perpendicular from centre to chord bisects chord }) \\
\Rightarrow & \mathrm{AO}^{2} & =\mathrm{OC}^{2}+\mathrm{AC}^{2} \\
\Rightarrow & a^{2} & =b^{2}+\mathrm{AC}^{2} \\
\therefore & \mathrm{AC} & =\sqrt{a^{2}-b^{2}} \\
& \mathrm{AB} & =2 \sqrt{a^{2}-b^{2}}=2 \mathrm{AC} \\
& & \text { length of chord }
\end{array}=2 \sqrt{a^{2}-b^{2}}
$$

Short Answer Type Questions I [2 Marks]

Question 18.

In figure, $A B$ is the diameter of a circle with centre O and $A T$ is a tangent. If $\angle A O Q=$ 58°, find $\angle A T Q$

Solution:

$\because \mathrm{AT}$ is a tangent and BA is a diameter.
So,
$\mathrm{OA} \perp \mathrm{AT}$
[radius is perpendicular to the tangent at point of contact]

$$
\Rightarrow \quad \angle \mathrm{OAT}=90^{\circ} \text { or } \angle \mathrm{BAT}=90^{\circ}
$$

Arc AQ subtends an angle of 58° at the circle.
So, $\quad \angle \mathrm{ABQ}=29^{\circ}$ [angle subtended by the arc at the centre is double

$$
\angle \mathrm{AOQ}=2 \angle \mathrm{ABQ}
$$ the angle subtended by the same arc on the circle]

In $\triangle \mathrm{ABT}$,

$$
\begin{array}{rlrl}
& & \angle \mathrm{A}+\angle \mathrm{ABT}+\angle \mathrm{ATB} & =180^{\circ} \\
\Rightarrow & 90^{\circ}+29^{\circ}+\angle \mathrm{ATB} & =180^{\circ} \\
\Rightarrow & \angle \mathrm{ATB} & =61^{\circ}
\end{array}
$$

Hence, $\angle \mathrm{ATQ}=61^{\circ}$

Question 19.

From a point T outside a circle of centre O, tangents TP and TQ are drawn to the
circle. Prove that OT is the right bisector of the line segment PQ.

Solution:

Given: TP and TQ are tangents to the circle of centre O.
To Prove: $\angle \mathrm{OMP}=90^{\circ}$ and $\mathrm{PM}=\mathrm{MQ}$.
Proof: \because TP and TQ are tangents at P and Q respectively.
$\mathrm{So}, \mathrm{OP} \perp \mathrm{PT}$ and $\mathrm{OQ} \perp \mathrm{QT}$
(\because radius is perpendicular to the tangent at point of contact)
$\therefore \quad \angle \mathrm{OPT}=\angle \mathrm{OQR}=90^{\circ}$
In $\triangle \mathrm{OPT}$ and $\triangle \mathrm{OQT}$

$$
\begin{aligned}
\mathrm{OP} & =\mathrm{OQ} \text { (radius) } \\
\angle \mathrm{P} & =\angle \mathrm{Q}\left(\text { each } 90^{\circ}\right) \\
\mathrm{OT} & =\mathrm{OT}(\text { common) } \\
\triangle \mathrm{OPT} & \cong \triangle \mathrm{OQT}(\text { By RHS }) \\
\angle 1 & =\angle 2(\text { By } \mathrm{CPCT})
\end{aligned}
$$

So,
Now, In \triangle OMP and $\triangle O M Q$,

$$
\mathrm{OP}=\mathrm{OQ} \text { (radius) }
$$

$\angle 1=\angle 2$ (Proved above)
$\mathrm{OM}=\mathrm{OM}$ (common)
So,

$$
\Delta \mathrm{OMP} \cong \Delta \mathrm{OMQ}(\mathrm{By} \mathrm{SAS})
$$

$\Rightarrow \quad \mathrm{PM}=\mathrm{MQ}$ and $\angle 3=\angle 4$ (By CPCT)
Now $\quad \angle 3+\angle 4=180^{\circ} \quad(\because$ Linear Pair Axiom)
\Rightarrow

$$
2 \angle 3=180^{\circ} \Rightarrow \angle 3=90^{\circ} \Rightarrow \angle \mathrm{OMP}=90^{\circ}
$$

Hence, OT is the right bisector of the line segment PQ.

Question 20.

In figure, two tangents RQ and RP are drawn from an external point R to the circle with centre O . If $\angle P R Q=120^{\circ}$, then prove that $O R=P R+R Q$.

Solution:

We know that, tangent is perpendicular r to radius. Perpendicular from centre bisects angle.
OR bisects $\angle \mathrm{PRQ}$

$$
\begin{array}{ll}
\therefore & \angle \mathrm{PRO}=\angle \mathrm{QRO}=60^{\circ} \\
& {\left[\because \angle \mathrm{PRQ}=\angle \mathrm{ORP}+\angle \mathrm{ORQ}=120^{\circ}\right]}
\end{array}
$$

In right $\triangle \mathrm{OPR}(\because \mathrm{OP} \perp \mathrm{PR}) \quad[\because$ radius is perpendicular to the targent at point of contact]
$\therefore \quad \cos \angle \mathrm{ORP}=\frac{\mathrm{PR}}{\mathrm{OR}}=\cos 60^{\circ}$

$\Rightarrow \quad O R=2 P R$
Similarly, in right $\triangle \mathrm{OQR}, \quad \frac{\mathrm{QR}}{\mathrm{OR}}=\frac{1}{2}=\cos 60^{\circ}$
\Rightarrow

$$
\begin{equation*}
\mathrm{OR}=2 \mathrm{QR} \tag{ii}
\end{equation*}
$$

Adding (i) and (ii), we get

$$
2 \mathrm{OR}=2 \mathrm{PR}+2 \mathrm{QR}
$$

$$
\Rightarrow \quad O R=P R+R Q
$$

Question 21.

In figure, a triangle $A B C$ is drawn to circumscribe a circle of radius 3 cm , such that the segments BD and DC are respectively of lengths 6 cm and 9 cm . If the area of $\triangle A B C$ is $54 \mathrm{~cm}^{2}$, then find the lengths of sides $A B$ and $A C$

Solution:

Let $\mathrm{AF}=x \mathrm{~cm}, \mathrm{BC}=(6+9)=15 \mathrm{~cm}$

```
\(\because \quad \mathrm{AF}=\mathrm{AE}\)
```

[tangents drawn from an external point are equal]
$\therefore \quad \mathrm{AE}=x \mathrm{~cm}$

Also	$\mathrm{BD}=\mathrm{BF}=6 \mathrm{~cm}$
and	$\mathrm{CD}=\mathrm{CE}=9 \mathrm{~cm}$
\therefore	$\mathrm{AB}=(x+6) \mathrm{cm}$
In $\triangle \mathrm{ABC}$,	$\mathrm{AC}=(x+9) \mathrm{cm}$

$$
\text { Area } \triangle \mathrm{ABC}=\text { Area } \triangle \mathrm{BOC}+\text { Area } \triangle \mathrm{COA}+\text { Area } \triangle \mathrm{AOB}
$$

$$
\Rightarrow \quad 54=\frac{1}{2} \mathrm{BC} \times \mathrm{OD}+\frac{1}{2} \mathrm{AC} \times \mathrm{OE}+\frac{1}{2} \mathrm{AB} \times \mathrm{OF}
$$

$$
\Rightarrow \quad 54 \times 2=15 \times 3+(9+x) \times 3+(6+x) \times 3
$$

$$
108=45+18+3 x+27+3 x
$$

$$
6 x=18 \Rightarrow x=3
$$

$$
\Rightarrow \quad \mathrm{AB}=6+x=6+3=9 \mathrm{~cm}
$$

$$
\mathrm{AC}=9+x=9+3=12 \mathrm{~cm}
$$

Question 22.

In figure, O is the centre of a circle. PT and PQ are tangents to the circle from an external point P. If $\angle T P Q=70^{\circ}$, find $\angle T R Q$

Solution:

We know that tangent is perpendicular to radius. Hence,

$$
\angle \mathrm{OTP}=\angle \mathrm{OQP}=90^{\circ}
$$

In quadrilateral PQOT,

$$
\begin{aligned}
\angle \mathrm{QOT}+\angle \mathrm{OTP}+\angle \mathrm{TPQ}+\angle \mathrm{OQP} & =360^{\circ} \\
\angle \mathrm{TOQ}+\angle \mathrm{TPQ} & =180^{\circ} \\
\Rightarrow \quad \angle \mathrm{TOQ} & =110^{\circ} \\
\text { Also } \quad \angle \mathrm{TOQ} & =2 \angle \mathrm{TRQ}
\end{aligned}
$$

[angle subtended by an arc at centre of the circle is twice the angle subtended by it in alternate segment]

$$
\begin{array}{lr}
\Rightarrow & 110^{\circ}=2 \angle \mathrm{TRQ} \\
\Rightarrow & \angle \mathrm{TRQ}=55^{\circ}
\end{array}
$$

[\because ASP of quadrilateral]

Question 23.

In figure, PQ is a chord of length 8 cm of a circle of radius 5 cm . The tangents at P
and Q intersect at a point T. Find the lengths of TP and TQ

Solution:

Join OT intersecting PQ at R.
OT bisects $\angle \mathrm{PTQ}$

$$
\begin{array}{lr}
\therefore & \angle \mathrm{PTO}=\angle \mathrm{QTO} \\
\therefore & \angle \mathrm{PTR}=\angle \mathrm{QTR} \\
\text { In } \triangle \mathrm{PTR} \text { and } \triangle \mathrm{QTR}, & \mathrm{PT}=\mathrm{QT}
\end{array}
$$

[length of tangents drawn from common external point are equal]

		RT	$=\mathrm{RT}$
		$\angle \mathrm{PTR}$	$=\angle \mathrm{QTR}$
\therefore	$\triangle \mathrm{PTR}$	$\cong \triangle \mathrm{QTR}$	
\Rightarrow	PR	$=\mathrm{RQ}$	
$\Rightarrow \mathrm{R}$	is mid-point of PQ		
\therefore		OR	$\perp \mathrm{PQ}$

In right triangle ORP
[common] $[\because$ from $(i)]$
[By SAS]
$[\because$ By CPCT]
$\Rightarrow R$ is mid-point of $P Q$
$\therefore \quad \mathrm{OR} \perp \mathrm{PQ}$

$$
\mathrm{OP}^{2}=\mathrm{PR}^{2}+\mathrm{OR}^{2}
$$

$[\because$ Given, $O P=5 \mathrm{~cm}, \mathrm{PQ}=8 \mathrm{~cm}$
$\therefore \mathrm{PR}=\mathrm{QR}=4 \mathrm{~cm}]$
$\Rightarrow \quad 25=16+\mathrm{OR}^{2}$ $\mathrm{OR}=3 \mathrm{~cm}$
In $\triangle O R Q$ and $\triangle O Q T$

		$\angle \mathrm{ORQ}$	$=\angle \mathrm{OQT}$
		$\angle \mathrm{ROQ}$	$=\angle \mathrm{ROQ}$
\Rightarrow	$\Delta \mathrm{ORQ}$	$\sim \triangle \mathrm{OQT}$	
\Rightarrow	$\frac{\mathrm{OR}}{\mathrm{OQ}}$	$=\frac{\mathrm{RQ}}{\mathrm{QT}}$	
\Rightarrow	$\frac{3}{5}$	$=\frac{4}{\mathrm{QT}} \Rightarrow \mathrm{QT}=\frac{20}{3} \mathrm{~cm}$	
Also	PT	$=\mathrm{QT} \quad \Rightarrow \quad \mathrm{PT}=\frac{20}{3} \mathrm{~cm}$	

Long Answer Type Questions [4 Marks]

Question 24.

In figure, tangents $P Q$ and $P R$ are drawn from an external point P to a circle with centre O, such that $\angle R P Q=30^{\circ}$. A chord $R S$ is drawn parallel to the tangent $P Q$. Find \angle RQS

Solution:

Construction: Draw a line through Q and perpendicular to PQ.

Proof: As
 $\mathrm{MQ} \perp \mathrm{PQ}$

So, MQ passes through the centre O. [If a line is perpendicular to the tangent, then it must be passed through centre of the circle]
$\Rightarrow \quad \angle \mathrm{OQP}=90^{\circ}$
Also $\quad \mathrm{PQ}=\mathrm{PR}$
[lengths of tangents drawn from an external point to a circle are equal]
In $\triangle P Q R$
$\mathrm{PQ}=\mathrm{PR}$

$\Rightarrow \quad \angle \mathrm{Q}=\angle \mathrm{R} \quad[\because$ angles opposite to equal sides are equal $]$
Now, $\quad \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ} \quad[\because$ ASP of triangle $]$
$\Rightarrow \quad 30^{\circ}+2 \angle \mathrm{Q}=180^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{Q}=150^{\circ}$
$\Rightarrow \quad \angle \mathrm{Q}=75^{\circ}$
$\begin{array}{lr}\because \text { Given, } & \mathrm{SR} \| \mathrm{PQ} \\ \Rightarrow & \angle \mathrm{QRS}=\angle \mathrm{RQP}\end{array}$
[if 2 lines are parallel, alternate angles are equal]
$\Rightarrow \quad \angle \mathrm{QRS}=75^{\circ}$
Also, $\quad \angle \mathrm{QSR}=\angle \mathrm{RQP} \quad[\because$ Corresponding angles equal $]$
$\Rightarrow \quad \angle \mathrm{QSR}=75^{\circ}$
Now, In $\triangle R Q S$,

$$
\begin{array}{rlrl}
& & \angle \mathrm{RQS}+\angle \mathrm{RSQ}+\angle \mathrm{SRQ} & =180^{\circ} \\
\Rightarrow & \angle \mathrm{RQS}+75^{\circ}+75^{\circ} & =180^{\circ} \\
\Rightarrow & & \angle \mathrm{RQS} & =180-150=30^{\circ}
\end{array}
$$

Alternate method:

Given: PQ and PR are tangents and $\angle \mathrm{RPQ}=30^{\circ}$
To find: $\angle \mathrm{RQS}$

$$
\begin{array}{ll}
\because & \text { SR \| QP } \\
\Rightarrow & \angle 1=\angle \mathrm{P} \\
\Rightarrow & \angle 1=30^{\circ}
\end{array}
$$

[\because ASP of triangle]
$\because \mathrm{PR}$ is tangent at P and $\angle 1=30^{\circ}$
So,
$\angle \mathrm{RQS}=\angle 1$
[By alternate segment theorem]
$\Rightarrow \quad \angle \mathrm{RQS}=30^{\circ}$

Question 25.

Prove that the tangent at any point of a circle is perpendicular to the radius throug

the point of contact

Solution:

Refer to Ans. 12

Question 26.

Prove that the lengths of the tangents drawn from an external point to a circle are equal

Solution:

Refer to Ans. 10.

Question 27.

Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.

Solution:

Given: APB is arc of the circle $\mathrm{C}(\mathrm{O}, r), \mathrm{P}$ is mid-point of arc APB and XY is tangent to the circle at P .

To Prove: $\mathrm{AB} \| \mathrm{XY}$

Join OA and OB
Here

$$
\begin{align*}
& \angle \mathrm{AOP}=\angle \mathrm{BOP} \\
& \text { (angle subtended by equal arc) } \\
& \mathrm{OA}=\mathrm{OB} \quad(\because \text { equal radii }) \\
& \mathrm{OC}=\mathrm{OC} \quad \text { (common) } \\
& \therefore \quad \triangle \mathrm{ACO} \cong \triangle \mathrm{BCO} \tag{SAS}\\
& \text { So, } \quad A C=B C \\
& \Rightarrow \quad \mathrm{OC} \perp \mathrm{AB} \\
& \therefore \quad \angle \mathrm{OCB}=\angle \mathrm{OCA}=90^{\circ}
\end{align*}
$$

Question 28.

In figure, O is the centre of the circle and TP is the tangent to the circle from an external point T . If $\angle \mathrm{PBT}=30^{\circ}$, prove that $\mathrm{BA}: \mathrm{AT}=2: 1$

Solution:

We have, $\angle \mathrm{BPA}=90^{\circ}[\because \mathrm{PT}$ is tangent to circle, tangent perpendicular radius]

In $\triangle \mathrm{BPA}, \angle \mathrm{ABP}+\angle \mathrm{BPA}+\angle \mathrm{PAB}=180^{\circ}[\because$ ASP of triangle $]$
$\Rightarrow \quad 30^{\circ}+90^{\circ}+\angle \mathrm{PAB}=180^{\circ}$

$$
\left[\because \angle \mathrm{PBT}=\angle \mathrm{ABP}=30^{\circ}\right]
$$

$$
\Rightarrow \quad \angle \mathrm{PAB}=60^{\circ}
$$

Also

$$
\angle \mathrm{POA}=2 \angle \mathrm{PBA}
$$

[\because Angle subtended by an arc at centre is twice angle subtended by arc on circle]
$\Rightarrow \quad \angle \mathrm{POA}=2 \times 30^{\circ}=60^{\circ}$
$\therefore \quad \angle \mathrm{PAO}=\angle \mathrm{POA}$
$\Rightarrow \quad \mathrm{OP}=\mathrm{AP} \quad$ (sides opposite to equal angles) $\ldots(i)$
In $\triangle \mathrm{OPT}, \quad \angle \mathrm{OPT}=90^{\circ} \quad$ (radius is perpendicular to tangent)

| | $\angle \mathrm{POT}$ | $=60^{\circ}$ |
| ---: | :--- | ---: | :--- |
| | $\angle \mathrm{PTO}$ | $=30^{\circ}$ |

[angle sum property of a triangle)
Also, $\quad \angle \mathrm{APT}+\angle \mathrm{ATP}=\angle \mathrm{PAO}$
$\therefore \quad \angle \mathrm{APT}+30^{\circ}=60^{\circ} \Rightarrow \angle \mathrm{APT}=30^{\circ}$
$\angle \mathrm{PTA}=\angle \mathrm{APT}$
(\because from above)
$\therefore \quad \mathbf{A P}=\mathbf{A T} \quad$ (sides opposite to equal angles)
From (i) and (ii)
\Rightarrow
$\mathrm{AT}=\mathrm{OP}=$ radius of the circle $=r \quad[\because \mathrm{AP}$ is radius of circle $]$
Now
$A B=2 r$
\Rightarrow
$\mathrm{AB}=2 \mathrm{AT} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AT}}=2 \Rightarrow \mathrm{AB}: \mathrm{AT}=2: 1$

2014

Short Answer Type Questions I [2 Marks]

Question 29.

Prove that the line segment joining the points of contact of two parallel tangents of a circle, passes through its centre.

Solution:

Given: PQ and RS are two parallel tangents to a circle at B and A respectively. O is the centre of the circle. AOB be a line segment.
To prove: AB passes through O .
Construction: Join OA and OB.
Proof: As we know, OB is perpendicular to PQ.
[Tangent is perpendicular to radius at the point of contact.]

Now, given, $\mathrm{PQ}|\mid \mathrm{RS} \Rightarrow \mathrm{BO}$ (Produced to RS) is perpendicular to RS. [A line perpendicular to one of the two parallel lines is perpendicular to other line also] Also, OA is perpendicular to $\mathrm{RS} \quad[\because$ Tangent perpendicular to radius $]$ From (i) and (ii), OA and OB must coincide as only one line can be drawn perpendicular from a point outside the line to the line.
\therefore AOB is straight line.
$\therefore \quad \mathrm{A}, \mathrm{O}, \mathrm{B}$ are collinear.
$\Rightarrow \mathrm{AB}$ Passes through O , the centre of the circle.

Question 30.

If from an external point P of a circle with centre O, two tangents $P Q$ and $P R$ are drawn, such that $\angle Q P R=120^{\circ}$, prove that $2 P Q=P O$.

Solution:

Given: $P Q$ and $P R$ are tangents from point P to circle with centre O.
Also,

$$
\begin{aligned}
\angle \mathrm{QPR} & =120^{\circ} \\
2 \mathrm{PQ} & =\mathrm{OP}
\end{aligned}
$$

To Prove:
Construction: Join OQ, OP and OR
Proof: In triangles OQP and ORP,

$$
\begin{aligned}
& \mathrm{OQ}=\mathrm{OR}=\mathrm{r}(\text { say }) \quad[\because \text { equal radii }] \\
& \mathrm{OP}=\mathrm{OP}(\text { common }) \\
& \mathrm{PQ}=\mathrm{PR}
\end{aligned}
$$

[The lengths of the tangents drawn from an external point to a circle are equal]

$$
\begin{aligned}
& \therefore \quad \triangle \mathrm{OQP} \cong \triangle \mathrm{ORP} \text { (by SSS) } \\
& \therefore \quad \angle \mathrm{OPQ}=\angle \mathrm{OPR} \quad \text { (By CPCT) } \\
& \text { Now, given } \quad \angle \mathrm{QPR}=120^{\circ} \\
& \Rightarrow \quad \angle \mathrm{OPQ}+\angle \mathrm{OPR}=120^{\circ} \\
& \Rightarrow \quad 2 \angle \mathrm{OPQ}=120^{\circ} \\
& \Rightarrow \quad \angle \mathrm{OPQ}=60^{\circ}=\angle \mathrm{OPR} \\
& \text { Now, In } \triangle \mathrm{OQP}, \quad \angle \mathrm{Q}=90^{\circ} \quad[\because \text { Tangent perpendicular to radius }] \\
& \text { Then, } \\
& \frac{\mathrm{PQ}}{\mathrm{OP}}=\cos 60^{\circ}=\frac{1}{2} \Rightarrow \mathrm{OP}=2 \mathrm{PQ}
\end{aligned}
$$

Question 31.

In figure, common tangents AB and CD to the two circles with Centres O 1 and O 2 intersect at E. Prove that $A B=C D$.

Solution:

In the given figure, AB and CD are common tangents to the two given circles with centres O_{1} and O_{2} respectively.
We know that the lengths of the tangents drawn from a point outside the circle to the circle are equal in length.

$$
\begin{aligned}
\therefore & \mathrm{AE} & =\mathrm{EC} \text { and } \mathrm{EB}=\mathrm{ED} \\
\Rightarrow & \mathrm{AE}+\mathrm{EB} & =\mathrm{CE}+\mathrm{ED} \\
\Rightarrow & \mathrm{AB} & =\mathrm{CD} .
\end{aligned}
$$

Question 32.

The incircle of an isosceles triangle $A B C$, in which $A B=A C$, touches the sides $B C$, $C A$ and $A B$ at D, E and F respectively. Prove that $B D=D C$

Solution:

We know that the lengths of the tangents drawn from a point outside the circle to the circle are equal in length.
$\therefore \quad \mathrm{AF}=\mathrm{AE}, \mathrm{BF}=\mathrm{BD}$ and $\mathrm{CD}=\mathrm{CE}$
Given $\quad \mathrm{AB}=\mathrm{AC}$

$$
\begin{aligned}
\Rightarrow & \mathrm{AF}+\mathrm{FB} & =\mathrm{AE}+\mathrm{EC} \\
\Rightarrow & \mathrm{FB} & =\mathrm{EC} \\
\Rightarrow & \mathrm{BD} & =\mathrm{CD}
\end{aligned}
$$

[using (i), $\mathrm{AF}=\mathrm{AE}$]
[using (i), $\mathrm{BF}=\mathrm{BD}$ and $\mathrm{CD}=\mathrm{CE}$]

Question 33.

In figure, XP and XQ are two tangents to the circle with centre O , drawn from an external point X. ARB is another tangent, touching the circle at R. Prove that $X A+A R=X B+B R$.

Solution:

Lengths of the tangents drawn from a point outside the circle to the circle are equal.
$\therefore \mathrm{XP}=\mathrm{XQ}, \mathrm{AP}=\mathrm{AR}$ and $\mathrm{BR}=\mathrm{BQ}$
Now, $\quad \mathrm{XP}=\mathrm{XQ} \quad[\because$ equal tangents $]$
$\Rightarrow \quad \mathrm{XA}+\mathrm{AP}=\mathrm{XB}+\mathrm{BQ}$
$\Rightarrow \quad \mathrm{XA}+\mathrm{AR}=\mathrm{XB}+\mathrm{BR} \quad[$ using $(i)]$
Hence proved.

Question 34.

Prove that the tangents drawn at the ends of any diameter of a circle are parallel.

Solution:

AB is diameter of a circle with centre O and l_{1}, l_{2} are the tangents to the circle at A and B . We know that radius is perpendicular to the tangent at the point of contact or diameter is perpendicular to the tangent at the point of contact.
$\therefore \quad \angle 1=90^{\circ}$ and $\angle 2=90^{\circ} \quad[\because$ See from figure $]$
$\Rightarrow \quad \angle 1=\angle 2$
But these are alternate angles.
$\therefore \quad l_{1}$ is parallel to l_{2}.

[\because If alternate angles are equal, so 2 lines are parallel]

Long Answer Type Questions [4 Marks]

Question 35.

Prove that the length of the tangents drawn from an external point to a circle are equal.

Solution:

Refer to Ans. 10.

Question 36.

Prove that a parallelogram circumscribing a circle is a rhombus

Solution:

Given: ABCD is parallelogram circumscribing a circle.
To prove: ABCD is a rhombus
Proof: We have,

$$
\begin{equation*}
\mathrm{DR}=\mathrm{DS} \tag{i}
\end{equation*}
$$

[Lengths of tangents drawn from an external point to a circle are equal]
Also,

$$
\begin{align*}
\mathrm{AP} & =\mathrm{AS} \tag{ii}\\
\mathrm{BP} & =\mathrm{BQ} \tag{iii}\\
\mathrm{CR} & =\mathrm{CQ} \tag{iv}
\end{align*}
$$

Adding (i), (ii), (iii) and (iv),

$$
(\mathrm{DR}+\mathrm{CR})+(\mathrm{AP}+\mathrm{BP})=(\mathrm{DS}+\mathrm{AS})+(\mathrm{BQ}+\mathrm{CQ})
$$

$$
\Rightarrow \quad \mathrm{CD}+\mathrm{AB}=\mathrm{AD}+\mathrm{BC}
$$

$\Rightarrow \quad 2 \mathrm{AB}=2 \mathrm{AD} \quad[\because$ In parallelogram, opposite sides are equal

$$
\begin{array}{ll}
\Rightarrow & \mathrm{AB}=\mathrm{AD} \\
\therefore & \mathrm{AB}=\mathrm{AD}=\mathrm{BC}=\mathrm{CD}
\end{array}
$$

Hence, ABCD is a rhombus as all sides are equal in rhombus.

Question 37.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Solution:

Refer to Ans. 12.

Question 38.

In figure, PQ is a chord of length 16 cm , of a circle of radius 10 cm . The tangents at
P and Q intersect at a point T. Find the length of TP.

Solution:

Given: PQ is chord of length $16 \mathrm{~cm}, \mathrm{TP}$ and TQ are the tangents to a circle with centre O, radius 10 cm .
To find: TP.
Solution: Join OP and OQ.
In triangles OTP and OTQ,
OT is common

$$
\begin{aligned}
\mathrm{OP} & =\mathrm{OQ} \quad \text { (radii) } \\
\mathrm{TP} & =\mathrm{TQ}
\end{aligned}
$$

[length of the tangents drawn from a point outside the circle to the circle are equal]
$\therefore \quad \triangle \mathrm{OPT} \cong \triangle \mathrm{OQT}$
(SSS congruence rule)
$\therefore \quad \angle \mathrm{POT}=\angle \mathrm{QOT}$
...(i) (By CPCT)
Consider, triangles OPR and OQR

$$
\mathrm{OP}=\mathrm{OQ}
$$

OR is common $\quad \angle \mathrm{POR}=\angle \mathrm{QOR}$
(radii)
[from (i)]
$\therefore \quad \triangle \mathrm{OPR} \cong \triangle \mathrm{OQR}$
So, $\quad \mathrm{PR}=\mathrm{RQ}=\frac{1}{2} \times 16=8 \mathrm{~cm}$

$$
\begin{equation*}
\angle \mathrm{ORP}=\angle \mathrm{ORQ}=90^{\circ} \tag{ii}
\end{equation*}
$$

In right-angled triangle TRP,

$$
\mathrm{TR}^{2}=\mathrm{TP}^{2}-(8)^{2}=\mathrm{TP}^{2}-64
$$

...(iv) [From (iii)]
Also, in $\triangle \mathrm{TOP}, \quad \mathrm{OT}^{2}=\mathrm{TP}^{2}+(10)^{2}=\mathrm{TP}^{2}+\mathrm{PO}^{2}$
(\because Pythagoras theorem)
$(\mathrm{TR}+\mathrm{OR})^{2}=\mathrm{TP}+100$
$(\mathrm{TR}+6)^{2}=\mathrm{TP}^{2}+100$

$$
[\because \text { OR }=\sqrt{100-64}=6]
$$

$\mathrm{TR}^{2}+12 \mathrm{TR}+36=\mathrm{TP}^{2}+100$
$\mathrm{TP}^{2}-64+12 \mathrm{TR}+36=\mathrm{TP}^{2}+100$
[From (iv)]

$$
12 \mathrm{TR}=128 \Rightarrow \mathrm{TR}=\frac{32}{3} \mathrm{~cm}
$$

From (iv), $\quad\left(\frac{32}{3}\right)^{2}=\mathrm{TP}^{2}-64$
$\Rightarrow \quad \mathrm{TP}^{2}=\frac{1024}{9}+64=\frac{1024+576}{9}=\frac{1600}{9} \Rightarrow \mathrm{TP}=\frac{40}{3} \mathrm{~cm}$.

Question 39.

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution:

Given: ABCD is a quadrilateral, circumscribing a circle with centre O and touches the quadrilateral at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S respectively.
To Prove: (i) $\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
(ii) $\angle \mathrm{BOC}+\angle \mathrm{AOD}=180^{\circ}$

Construction: Join OP, OQ, OR and OS.
Proof: Consider, triangles APO and ASO,

$$
\mathrm{AP}=\mathrm{AS}
$$

[Lengths of the tangents drawn from a point outside the circle to the circle are equal]

$$
\mathrm{OS}=\mathrm{OP}(\text { radii) }
$$

OA is common
$\therefore \quad \triangle \mathrm{APO} \cong \angle \mathrm{ASO} \quad$ (SSS congruency rule)
$\therefore \quad \angle \mathrm{OAP}=\angle \mathrm{OAS}=x$ (say)
Similarly, $\angle \mathrm{OBP}=\angle \mathrm{OBQ}=y$ (say)
$\angle \mathrm{OCQ}=\angle \mathrm{OCR}=z$ (say)
and $\quad \angle \mathrm{ODR}=\angle \mathrm{ODS}=w$ (say)
We have, $\angle \mathrm{DAB}+\angle \mathrm{ABC}+\angle \mathrm{BCD}+\angle \mathrm{CDA}=360^{\circ}$
$[\because$ Angle sum property of quadrilateral $]$
$\Rightarrow \quad 2 x+2 y+2 z+2 w=360^{\circ}$
$\Rightarrow \quad x+y+z+w=180^{\circ}$
Consider, $\angle \mathrm{AOB}+\angle \mathrm{COD}=\left[180^{\circ}-x-y\right]+\left[180^{\circ}-w-z\right]$
[Sum of angles of a triangle is 180°]

$$
\left.\begin{array}{rl}
& =360^{\circ}-(x+y+z+w) \\
& =360^{\circ}-180^{\circ} \\
\therefore \quad \angle \mathrm{AOB}+\angle \mathrm{COD} & =180^{\circ} \\
\text { Again consider, } \angle \mathrm{BOC}+ & \angle \mathrm{AOD} \\
& =\left[180^{\circ}-y-z\right]+\left[180^{\circ}-x-w\right] \\
& =360^{\circ}-(x+y+z+w) \\
& =360^{\circ}-180^{\circ}=180^{\circ}
\end{array} \quad \text { [Susing of angles of a triangle is } 180^{\circ}\right]
$$

Hence proved.

Question 40.

In figure, a triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm , such that the segments BD and DC are of lengths 8 cm and 6 cm respectively. Find the sides $A B$ and $A C$.

Solution:

We know that the lengths of the tangents drawn from a point outside the circle to the circle are equal in length.

$$
\begin{aligned}
& \therefore \quad \mathrm{AF}=\mathrm{AE}=x \text {, (say) } \\
& \mathrm{BF}=\mathrm{BD}=8 \mathrm{~cm} \\
& \mathrm{CE}=\mathrm{CD}=6 \mathrm{~cm} \\
& \therefore \quad \mathrm{AB}=(x+8) \mathrm{cm}=a \text { (say) } \\
& \mathrm{AC}=(x+6) \mathrm{cm}=b \text { (say) } \\
& \text { and } \\
& c(\mathrm{say})=\mathrm{BC}=14 \mathrm{~cm}=(8+6) \mathrm{cm}
\end{aligned}
$$

Now, perimeter of triangle using Heron's formula

$$
\begin{array}{rlrl}
& & 2 S & =x+8+x+6+14 \\
& & =28+2 x \\
\Rightarrow \quad & S & =14+x
\end{array}
$$

\therefore Area of $\triangle \mathrm{ABC}$ using Heron's formula,

$$
\begin{align*}
& =\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{(14+x)(14+x-x-8)(14+x-x-6)(14+x-14)} \\
& =\sqrt{(14+x) \times 6 \times 8 \times x} \tag{i}
\end{align*}
$$

Also,

$$
\text { area of } \begin{align*}
\triangle \mathrm{ABC} & =\operatorname{ar}(\mathrm{BOC})+\operatorname{ar}(\mathrm{BOA})+\operatorname{ar}(\mathrm{AOC}) \\
& =\frac{1}{2} \times 14 \times 4+\frac{1}{2} \times(8+x) \times 4+\frac{1}{2}(6+x) \times 4 \\
& =28+16+2 x+12+2 x=56+4 x \tag{ii}
\end{align*}
$$

From (i) and (ii), we get

$$
\sqrt{48 x(14+x)}=56+4 x
$$

Squaring both sides, we get

$$
\begin{array}{rlrl}
& & 48 x(14+x) & =(56+4 x)^{2} \\
\Rightarrow & 48 x(14+x) & =16(14+x)^{2} \\
\Rightarrow & 3 x(14+x)-(14+x)^{2} & =0 \\
\Rightarrow & (14+x)(3 x-14-x) & =0 \\
\Rightarrow & (14+x)(2 x-14) & =0 \\
\Rightarrow & 14+x & =0 \text { or } 2 x-14=0 \\
\Rightarrow & x & =-14 \text { (rejected) or } x=7 \\
\therefore & & \mathrm{AB} & =(7+8) \mathrm{cm}=15 \mathrm{~cm} \\
\text { and } & \mathrm{AC} & =(7+6) \mathrm{cm}=13 \mathrm{~cm} .
\end{array}
$$

Question 41.

Prove that the lengths of the tangents drawn from an external point to a circle are equal.

Solution:

Given: A circle $C(\mathrm{o}, r)$. P is a point outside the circle and PA and PB are tangents to a circle.
To Prove: $\mathrm{PA}=\mathrm{PB}$
Construct: Draw OA, OB and OP.
Proof: Consider triangle OAP and OBP.

$$
\begin{equation*}
\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ} \tag{i}
\end{equation*}
$$

[Radius is perpendicular to the tangent at the point of contact]

$$
\mathrm{OA}=\mathrm{OB}
$$

OP' is common

(radii) ...(ii)
(RHS) [from (i), (ii), (iii)]
(CPCT)

Question 42.

A quadrilateral is drawn to circumscribe a circle. Prove that the sums of opposite sides are equal

Solution:

Given: A quadrilateral ABCD which circumscribes a circle.
Let it touches the circle at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S as shown in figure.
To Prove: $\mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}$
Proof: We know that the lengths of the tangents drawn from a point outside the circle to the circle are equal.
$\therefore \mathrm{AP}=\mathrm{AS} ; \mathrm{BP}=\mathrm{BQ} ; \mathrm{CQ}=\mathrm{CR}$ and $\mathrm{DR}=\mathrm{DS}$
Consider, $\mathrm{AB}+\mathrm{CD}=\mathrm{AP}+\mathrm{PB}+\mathrm{CR}+\mathrm{RD}$

$$
\begin{align*}
& =A S+B Q+C Q+D S \tag{i}\\
& =(A S+D S)+(B Q+C Q)=A D+B C
\end{align*}
$$

[using (i)]

2013

Short Answer Type Questions I [2 Marks]

Question 43.

Prove that the parallelogram circumscribing a circle is a rhombus

Solution:

Refer to Ans. 36.

Question 44.

In the given figure, a circle inscribed in $\triangle A B C$ touches its sides $A B, B C$ and $A C$ at points D, E and F respectively. If $A B=12 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$, then find the lengths of $A D, B E$ and $C F$

Solution:

Given, $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$

$$
\begin{array}{llr}
\text { Let } & \mathrm{AD}=x \mathrm{~cm} & \\
\therefore & \mathrm{BD}=\mathrm{AB}-\mathrm{AD}=(12-x) \mathrm{cm} & \\
\because & \mathrm{AD}=\mathrm{AF} & \\
\therefore & \mathrm{AF} & =x \mathrm{~cm} \\
\text { Now, } & \mathrm{CF}=\mathrm{AC}-\mathrm{AF}=(10-x) \mathrm{cm} & \\
\text { Also, } & \mathrm{CE}=\mathrm{CF} \Rightarrow \mathrm{CE}=(10-x) \mathrm{cm} & \\
\text { And } & \mathrm{BD}=\mathrm{BE} & \\
\Rightarrow & \mathrm{BE}=(12-x) \mathrm{cm} & \\
\text { Now, } & \mathrm{BC}=\mathrm{CE}+\mathrm{BE} & \\
\Rightarrow & 8 & =(10-x)+(12-x) \\
\Rightarrow & 8 & =22-2 x \Rightarrow 2 x=14 \\
\Rightarrow & x & =7 \mathrm{~cm} \\
\Rightarrow & \mathrm{AD} & =7 \mathrm{~cm} \\
\Rightarrow & \mathrm{BE} & =12-x=12-7=5 \mathrm{~cm} \\
& \text { [From }(i)] \\
\text { and } & & \mathrm{CF}
\end{array}
$$

Question 45.

In the given figure, two circles touch each other at the point C. Prove that the common tangent to the circles at C , bisects the common tangent at P and Q .

Solution:

PR and RC are tangents to circle with centre A.

$$
\begin{equation*}
\therefore \quad \mathrm{PR}=\mathrm{RC} \text { [tangent from common point } \mathrm{R}] \tag{i}
\end{equation*}
$$

Similarly RQ and RC are tangents to circle with centre B
$\therefore \quad \mathrm{RQ}=\mathrm{RC}$
From (i) and (ii),
$\mathrm{PR}=\mathrm{RQ}$
\therefore CR bisects PQ.

Question 46.

In the given figure, a quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that
$A B+C D=A D+B C$

Solution:

Quadrilateral ABCD circumscribing a circle.
$\therefore \quad \mathrm{AP}=\mathrm{AS}$ [tangents drawn from common external point to a circle are equal in length.]

$$
\begin{aligned}
\mathrm{BP} & =\mathrm{BQ} \\
\mathrm{DR} & =\mathrm{DS} \\
\mathrm{CR} & =\mathrm{CQ}
\end{aligned}
$$

On adding,

$$
\begin{aligned}
\mathrm{AP}+\mathrm{BP}+\mathrm{DR}+\mathrm{CR} & =\mathrm{AS}+\mathrm{BQ}+\mathrm{DS}+\mathrm{CQ} \\
(\mathrm{AP}+\mathrm{BP})+(\mathrm{DR}+\mathrm{CR}) & =(\mathrm{AS}+\mathrm{DS})+(\mathrm{BQ}+\mathrm{CQ}) \\
\mathrm{AB}+\mathrm{CD} & =\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

Question 47.

In the given figure, a circle inscribed in $\triangle A B C$, touches its sides $B C, C A$ and $A B$ at the points P, Q and R respectively. If $A B=A C$, then prove that $B P=C P$.

Solution:

$$
\begin{array}{lrl}
& \mathrm{AB} & =\mathrm{AC} \\
\therefore & \mathrm{AR}+\mathrm{BR}=\mathrm{AQ}+\mathrm{CQ} \\
\mathrm{AR}+\mathrm{BR} & =\mathrm{AR}+\mathrm{CQ} \\
& & {[\mathrm{AQ}=\mathrm{AR}, \text { euqal tangents }]} \\
\Rightarrow & \mathrm{BR} & =\mathrm{CQ} \\
\text { Now, } & \mathrm{BR} & =\mathrm{BP}[\text { Length of equal tange } \\
\Rightarrow & \mathrm{CQ}=\mathrm{CP} \\
\Rightarrow & \mathrm{BP}=\mathrm{CP}
\end{array}
$$

Question 48.

In the given figure, two tangents PA and PB are drawn to a circle with centre O from an external point P. Prove that $\angle A P B=2 \angle O A B$

Solution:

Construction: Join OP and OB.
Proof: Now, $\mathrm{OA} \perp \mathrm{AP}$ [Radius is perpendicular to tangent at the point of contact]

$$
\begin{array}{lrlrl}
\Rightarrow & \angle \mathrm{OAP} & =90^{\circ} \\
& \text { Similarly, } & \mathrm{OB} & \perp \mathrm{BP} \\
\Rightarrow & \angle \mathrm{OBP} & =90^{\circ} \\
\text { In quadrilateral OAPB } & & \\
& & \angle \mathrm{OAP}+\angle \mathrm{OBP} & =90^{\circ}+90^{\circ}=180^{\circ}
\end{array}
$$

\therefore Quadrilateral OAPB is a cyclic quadrilateral.

$$
\left.\begin{array}{ll}
\Rightarrow & \angle \mathrm{OAB} \\
\text { Also, } & =\angle \mathrm{OPB} \text { [Angles in same segment] } \\
\Rightarrow & \angle \mathrm{OPB}
\end{array}=\angle \mathrm{OPA} \text { [OP bisects } \angle \mathrm{APB}\right]
$$

[From (i)]

From (i) and (ii)

$$
\angle \mathrm{APB}=2 \angle \mathrm{OAB}
$$

$$
[\because \angle \mathrm{OAB}=\angle \mathrm{OPB}]
$$

Long Answer Type Questions [4 Marks]

Question 49.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Solution:

Refer to ANS. 12

Question 50.

In the given figure I,m are two parallel tangents to the circle with center O,touching the circle at A and B respectively. Another tangent at C intersect the line I at D and m at E. prove that $\angle D O E=90$

Solution:

Given: Line $l \| m$ and both are tangents to a circle at points A and B respectively.
To prove: $\angle \mathrm{DOE}=90^{\circ}$
Construction: Join OC
Proof: In $\triangle \mathrm{ADO}$ and $\triangle \mathrm{CDO}$,
$\mathrm{AD}=\mathrm{DC} \quad$ [tangents from an external point are equal]
$\mathrm{OD}=\mathrm{OD}$ [common]

$\therefore \quad \triangle \mathrm{ADO} \cong \triangle \mathrm{COD}$ [By RHS]
$\therefore \quad \angle 1=\angle 2 \quad$... (i) [By CPCT]
Similarly, in $\triangle \mathrm{BOE}$ and $\triangle \mathrm{COE}$,

$$
\begin{equation*}
\angle 3=\angle 4 \tag{ii}
\end{equation*}
$$

Now, $\quad \angle 1+\angle 2+\angle 3+\angle 4=180^{\circ}$
[angles on a straight line]
$\Rightarrow \quad 2 \angle 2+2 \angle 3=180^{\circ} \quad[\because \angle 1=\angle 2$ and $\angle 3=\angle 4]$
$\Rightarrow \quad 2(\angle 2+\angle 3)=180^{\circ}$
$\Rightarrow \quad \angle 2+\angle 3=90^{\circ} \Rightarrow \angle \mathrm{DOE}=90^{\circ}$

Question 51.

Prove that the lengths of tangents drawn from an external point to a circle are equal.

Solution:

Given: PA and PB are tangents to a circle with centre O.
To Prove: PA = PB
Construction: Join OP, OA, OB.
Proof: In $\triangle A O P$ and $\triangle B O P$

$$
\begin{align*}
\mathrm{OP} & =\mathrm{OP} \quad \text { (common) } \\
\mathrm{OA} & =\mathrm{OB}(\text { radii of circle }) \\
\angle \mathrm{OAP} & =\angle \mathrm{OBP}=90^{\circ} \\
\triangle \mathrm{AOP} & \cong \triangle \mathrm{BOP} \tag{RHS}\\
\therefore \quad \mathrm{PA} & =\mathrm{PB}
\end{align*}
$$

(radius is perpendicular to tangent)
(CPCT)

Question 52.

In the given figure, PA and PB are two tangents drawn from an external point P to a circle with centre O. Prove that $O P$ is the right bisector of line segment $A B$.

Solution:

Join OA and OB.
In $\triangle \mathrm{PAO}$ and $\triangle \mathrm{PBO}$

		OA	$=\mathrm{OB}$
		OP	$=\mathrm{OP}$
\therefore	AP	$=\mathrm{BP}$	
\Rightarrow	$\triangle \mathrm{PAO}$	$\cong \Delta \mathrm{PBO}$	
\Rightarrow	$\angle 1$	$=\angle 2$	

[Radii]
[Common]
[Tangents from P]
(SSS congruence rule)

In $\triangle \mathrm{APC}$ and $\triangle \mathrm{BPC}$
$\angle 1=\angle 2$ [Proved]
$\mathrm{AP}=\mathrm{BP}$
and
$\mathrm{PC}=\mathrm{PC}$
$\therefore \quad \triangle \mathrm{APC} \cong \triangle \mathrm{BPC}$

$\Rightarrow \quad \mathrm{AC}=\mathrm{BC}$
[SAS congruence rule]
[CPCT]
and $\quad \angle \mathrm{ACP}=\angle \mathrm{BCP}$
Also, $\quad \angle \mathrm{ACP}+\angle \mathrm{BCP}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ACP}=\angle \mathrm{BCP}=90^{\circ}$
$\therefore \quad$ OP is the right bisector of AB .

Question 53.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Solution:

Given: A circle with centre O, line l is tangent to the circle at A.
To Prove: Radius OA is perpendicular to the tangent at A .
Construction: Take a point P , other than A , on tangent l. Join OP, meeting the circle at R.
Proof: We know that tangent to the circle touches, the circle at one point and all other points on the tangent lie in the exterior of a circle.
$\therefore \quad \mathrm{OP}>\mathrm{OR}$ (radius of circle)
$\Rightarrow \mathrm{OP}>\mathrm{OA}(\because \mathrm{OR}=\mathrm{OA}$, radius of circle $)$

$\Rightarrow \mathrm{OA}<\mathrm{OP}$
$\Rightarrow \mathrm{OA}$ is the smallest segment, from O to a point on the tangent.
We know that smallest line segment from a point outside the circle to the line is perpendicular segment.
Hence, $\mathrm{OA} \perp$ tangent l.
\Rightarrow tangent at any point of a circle is perpendicular to the radius through the point of contact.

Question 54.

In the given figure, the sides $A B, B C$ and $C A$ of $\triangle A B C$ touch a circle with centre O and radius r at P, Q and R respectively.
Prove that:

1. $A B+C Q=A C+B Q$
2. Area $(\triangle A B C)=1 / 2$ (perimeter of $\triangle A B C) X r$

Solution:
$\begin{array}{ll}\text { (i) We have, } & \mathrm{AP}=\mathrm{AR} \quad \text { [Tangents from } \mathrm{A}] \\ \text { Similarly, } & \mathrm{BP}=\mathrm{BQ} \text { [Tangents from } \mathrm{B}] \\ & \mathrm{CR}=\mathrm{CQ}[\text { Tangents from } \mathrm{C}]\end{array}$
Now, we have

$$
\begin{array}{rlrl}
\because & & \mathrm{AP} & =\mathrm{AR} \tag{iii}\\
\Rightarrow & & (\mathrm{AB}-\mathrm{BP}) & =(\mathrm{AC}-\mathrm{CR}) \\
\Rightarrow & \mathrm{AB}+\mathrm{CR} & =\mathrm{AC}+\mathrm{BP} \\
\Rightarrow & \mathrm{AB}+\mathrm{CQ} & =\mathrm{AC}+\mathrm{BQ} \\
\text { (ii) } & & \mathrm{Area}(\triangle \mathrm{ABC}) & =\mathrm{Area}(\triangle \mathrm{ABO}+\triangle \mathrm{OBC}+\mathrm{OAC}) \quad \text { [Using eq. (ii) and (iii)] } \\
& & & \frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{AC}) \times r\left[\therefore \text { Area }(\Delta)=\frac{1}{2} \times \text { base } \times\right. \text { height] } \\
& & & \left.=\frac{1}{2} \text { (perimeter of } \triangle \mathrm{ABC}\right) \times r
\end{array}
$$

2012

Short Answer Type Questions I [2 Marks]

Question 55.

Tangents $P A$ and $P B$ are drawn from an external point P to two concentric circles with centre O and radii 8 cm and 5 cm respectively, as shown in Fig. If $A P=15 \mathrm{~cm}$, then find the length of $B P$

Solution:

Join OP.

In $\triangle \mathrm{PAO}$ and $\triangle \mathrm{PBO}$

$$
\angle \mathrm{PAO}=90^{\circ}, \angle \mathrm{PBO}=90^{\circ}
$$

(\because tangent is perpendicular to radius at the point of contact) In right angled $\triangle \mathrm{PAO}$

$$
\begin{aligned}
\mathrm{PA}^{2}+\mathrm{OA}^{2} & =\mathrm{OP}^{2}[\because \text { Pythagoras theorem }] \\
15^{2}+8^{2} & =\mathrm{OP}^{2} \\
225+64 & =\mathrm{OP}^{2} \\
\mathrm{OP}^{2} & =289 \\
\mathrm{OP} & =\sqrt{289}=17 \mathrm{~cm}
\end{aligned}
$$

Now, In right angled $\triangle \mathrm{PBO}$

$$
\mathrm{PB}^{2}+\mathrm{BO}^{2}=\mathrm{PO}^{2} \quad[\because \text { Pythagoras theorem }]
$$

$$
\begin{aligned}
\mathrm{PB}^{2}+5^{2} & =(17)^{2} \\
\mathrm{~PB}^{2}+25 & =289 \\
\mathrm{~PB}^{2} & =289-25 \\
\mathrm{~PB}^{2} & =264 \\
\mathrm{~PB} & =\sqrt{264}=2 \sqrt{66} \mathrm{~cm}
\end{aligned}
$$

Question 56.

In figure, an isosceles triangle $A B C$, with $A B=A C$, circumscribes a circle. Prove that the point of contact P bisects the base $B C$

Solution:

Let the centre of circle be O .
Join OR, OQ, OB, OP, OC.

$$
\angle 1=\angle 2=\angle 3=\angle 4=90^{\circ}
$$

(\because Radius is perpendicular to tangent at the point of contact)
In $\triangle O R B$ and $\triangle O Q C$

By SAS congruence rule,

$$
\begin{aligned}
O R & =O Q \quad \text { (Radii of same circle) } \\
\angle 1 & =\angle 2 \quad\left(\text { each } 90^{\circ}\right) \\
\mathrm{RB} & =\mathrm{QC}\binom{\because \mathrm{AB}=\mathrm{AC} \text { and } \mathrm{AR}=\mathrm{AQ}}{\mathrm{So}, \mathrm{AB}-\mathrm{AR}=\mathrm{AC}-\mathrm{AQ}}
\end{aligned}
$$

$$
\triangle \mathrm{ORB} \cong \angle \mathrm{OQC}
$$

$\therefore \quad \mathrm{OB}=\mathrm{OC}$

(By CPCT)

In $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPC}$

$$
\begin{aligned}
\mathrm{OP} & =\mathrm{OP} \\
\angle 3 & =\angle 4 \\
\mathrm{OB} & =\mathrm{OC}
\end{aligned}
$$

By RHS congruence rule,

$$
\begin{align*}
\triangle \mathrm{OPB} & \cong \triangle \mathrm{OPC} \\
\mathrm{BP} & =\mathrm{PC} \tag{ByCPCT}
\end{align*}
$$

Hence, P bisects the base BC.

Question 57.

In figure, the chord $A B$ of the larger of the two concentric circles, with centre O , touches the smaller circle at C. Prove that $A C=C B$.

Solution:

Given: Two concentric circles with centre \mathbf{O}.
$A B$ is chord of bigger circle which touches the smaller circle to C.
To Prove: $\mathrm{AC}=\mathrm{CB}$
Construction: Join OA, OC, OB
Proof: In $\triangle \mathrm{OCA}$ and $\triangle \mathrm{OCB}$

$$
\begin{aligned}
\mathrm{OC} & =\mathrm{OC} \\
\angle 1 & =\angle 2 \\
\mathrm{OA} & =\mathrm{OB}
\end{aligned}
$$

(common)
(Radius perpendicular tangent) (radii of same circle).

By RHS congruence rule,

$$
\begin{aligned}
\triangle O C A & \cong \triangle O C B \\
A C & =B C
\end{aligned}
$$

Question 58.

In figure, a right triangle $A B C$, circumscribes a circle of radius r. If $A B$ and $B C$ are of lengths 8 cm and 6 cm respectively, find the value of r.

Solution:

$\because \mathrm{ABC}$ is right angle Δ, right $\angle d$ at B .
So, By Pythagoras theorem

$$
\begin{array}{rlrl}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2}=8^{2}+6^{2}=100 \\
\mathrm{AC} & =10 \mathrm{~cm} \\
\text { So, } & & \operatorname{ar~}(\triangle \mathrm{ABC}) & =\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm}^{2} \\
\text { Also, } & \operatorname{ar~}(\triangle \mathrm{ABC}) & =\operatorname{ar}(\Delta \mathrm{OBC})+\operatorname{ar}(\Delta \mathrm{OAC})+\operatorname{ar}(\Delta \mathrm{OAB}) \\
\Rightarrow & 24 & =\frac{1}{2} \times 6 \times r+\frac{1}{2} \times 10 \times r+\frac{1}{2} \times 8 \times r \\
\Rightarrow & 24 & =3 r+5 r+4 r \Rightarrow 12 r=24 \\
\Rightarrow & & r & =2 \mathrm{~cm}
\end{array}
$$

Question 59.

Prove that the tangents drawn at the ends of a diameter of a circle are parallel

Solution:

AB is the diameter.
$\mathrm{R}_{1} \mathrm{~T}_{1}$ and $\mathrm{R}_{2} \mathrm{~T}_{2}$ are the tangents at point A and B respectively.
Now,
$\mathrm{OB} \perp \mathrm{R}_{2} \mathrm{~T}_{2}$
[radius perpendicular the tangent at point of contact]
$\Rightarrow \quad \angle 1=90^{\circ}$
Also, $\quad \mathrm{OA} \perp \mathrm{R}_{1} \mathrm{~T}_{1}$
[radius perpendicular the tangent at point of contact]
$\Rightarrow \quad \angle 2=90^{\circ}$

Now, $\angle 1+\angle 2=90^{\circ}+90^{\circ}=180^{\circ}$
$\Rightarrow \quad \mathrm{R}_{1} \mathrm{~T}_{1} \| \mathrm{R}_{2} \mathrm{~T}_{2} \quad[\because$ if interior angles on same side is supplementary,

Question 60.

The incircle of an isosceles triangle $A B C$, with $A B=A C$, touches the sides $A B, B C$ and CA at D, E and F respectively. Prove that E bisects BC

Solution:

We have,

$$
\begin{align*}
& \mathrm{AB}=\mathrm{AC} \quad[\text { Given }] \tag{i}\\
& \mathrm{AD}=\mathrm{AF} \tag{ii}
\end{align*}
$$

[tangents drawn from an external point are equal]
On subtracting eq (ii) from eq (i), we get

$$
\begin{equation*}
\mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AF} \Rightarrow \mathrm{BD}=\mathrm{CF} \tag{iii}
\end{equation*}
$$

\because Also,

$$
\begin{equation*}
\mathrm{BD}=\mathrm{BE} \tag{iv}
\end{equation*}
$$

$\therefore \quad$ from (iii) and (iv), we have

$$
\begin{equation*}
\mathrm{BE}=\mathrm{CF} \tag{v}
\end{equation*}
$$

Also,

$$
\mathrm{CF}=\mathrm{CE}
$$

Also,

$$
\mathrm{BE}=\mathrm{CE}
$$

$\therefore \quad \mathrm{E}$ bisects BC .

Question 61.

Prove that in two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact

Solution:

Given: Let O be the centre of two concentric circles C_{1} and C_{2}. Let $A B$ be the chord of larger circle C_{2} which is a tangent to the smaller circle C_{1} at D.
To prove: Now we have to prove that the chord AB is bisected at D that is $\mathrm{AD}=\mathrm{BD}$.
Construction: Join OD.
Proof: Now since OD is the radius of the circle C_{1} and AB is the tangent to the circle C_{1} at D .

So, $\mathrm{OD} \perp \mathrm{AB} \quad$ [radius of the circle is perpendicular to tangent at any point of contact] Since $A B$ is the chord of the circle C_{2} and $O D \perp A B$.
$\therefore \quad \mathrm{AD}=\mathrm{DB}$ [perpendicular drawn from the centre to the chord always bisects the chord]

Short Answer Type Questions II [3 Marks]

Question 62.

Prove that the parallelogram circumscribing a circle is a rhombus.

Solution:

Given: A circle with centre O.
ABCD is a parallelogram circumscribing the circle, touching it at P, Q, R, S
To Prove: ABCD is a Rhombus.

Proof:
 $$
\mathrm{AR}=\mathrm{AS}
$$

$$
[\because \text { tangents from an external point are equal }]
$$

$$
\begin{equation*}
\mathrm{RB}=\mathrm{BQ} \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{DP}=\mathrm{DS} \tag{iii}
\end{equation*}
$$

$$
\mathrm{PC}=\mathrm{CQ}
$$

$[\mathrm{By}(i),(i i),(i i i),(i v)]$

Now, $\quad A B+D C=A D+B C$ $A B+A B=A D+A D$
$[\because A B C D$ is a parallelogram, so opposite sides are equal, i.e. $A B=C D \cdot A D=B C]$

$$
2 \mathrm{AB}=2 \mathrm{AD}
$$

$$
\mathrm{AB}=\mathrm{AD}
$$

So,

$$
\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}
$$

ABCD is a parallelogram with all sides equal.
Hence, ABCD is a Rhombus.

Question 63.

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution:

Given: ABCD is a quadrilateral circumscribing the circle with centre O touching it at $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$.
To Prove: $\quad \angle \mathrm{AOB}+\angle \mathrm{DOC}=180^{\circ}$

$$
\angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}
$$

Construction: Join AO, PO, BO, QO, CO, RO, DO, SO,

Proof: In $\triangle A O S$ and $\triangle A O P$

$$
\begin{aligned}
\mathrm{AO} & =\mathrm{AO} \\
\mathrm{AS} & =\mathrm{AP} \\
\mathrm{OS} & =\mathrm{OP}
\end{aligned}
$$

(common)
(tangents from external point)
(radii of same circle)
By SSS congruence

$$
\begin{align*}
\Delta \mathrm{AOS} & \cong \triangle \mathrm{AOP} \\
\angle 1 & =\angle 2 \tag{ByCPCT}\\
\angle 3 & =\angle 4, \angle 5=\angle 6, \angle 7=\angle 8 \tag{ii}
\end{align*}
$$

Similarily, $\quad \angle 3=\angle 4, \angle 5=\angle 6, \angle 7=\angle 8$
Now, $\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ} \quad[\because$ ASP of quadrilateral]
$\angle 2+\angle 2+\angle 3+\angle 3+\angle 6+\angle 6+\angle 7+\angle 7=360^{\circ}$
[By (i), (ii)]

$$
2[\angle 2+\angle 3+\angle 6+\angle 7]=360^{\circ}
$$

$$
\angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}
$$

Similarily, $\quad \angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}$

Question 64.

In figure, a circle is inscribed in a triangle $P Q R$ with $P Q=10 \mathrm{~cm}, Q R=8 \mathrm{~cm}$ and $P R$ $=12 \mathrm{~cm}$. Find the lengths QM, RN and $P L$.

Solution:

We know that the tangents drawn from an external point to a circle
are equal.
Therefore
Let
$\mathrm{QM}=x=\mathrm{QL}$
$\mathrm{MR}=y=\mathrm{RN}$
and
$\mathrm{PL}=z=\mathrm{PN}$
Now
$\mathrm{PQ}=10 \mathrm{~cm}, \mathrm{QR}=8 \mathrm{~cm}, \mathrm{PR}=12 \mathrm{~cm}$
$\Rightarrow \quad x+y=8, y+z=12, z+x=10$
$\Rightarrow \quad 2 x+2 y+2 z=8+12+10=30$

$\Rightarrow \quad x+y+z=15 \Rightarrow 8+z=15 \Rightarrow z=7$
$\Rightarrow \quad x+12=15 \Rightarrow x=3$
$\Rightarrow \quad y+10=15 \Rightarrow y=5$
Hence, $\mathrm{QM}=3 \mathrm{~cm}, \mathrm{RN}=5 \mathrm{~cm}$ and $\mathrm{PL}=7 \mathrm{~cm}$.

Question 65.

Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$

Solution:

Given: A circle with centre O. External point T and two tangents TP and TQ to the circle, where P, Q are the points of contact.

To Prove:	$\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$
Proof: Let	$\angle \mathrm{PTQ}=x$

In $\triangle \mathrm{PTQ}$,

$$
\mathrm{PT}=\mathrm{PQ}
$$

[The lengths of tangents drawn from an external point to a circle are equal]

$$
\begin{aligned}
& \angle \mathrm{TPQ}=\angle \mathrm{TQP} \quad \quad \quad \text { [angles opposite to equal sides are equal] } \\
& \angle \mathrm{TPQ}=\angle \mathrm{TQP}=\frac{1}{2}\left(180^{\circ}-x\right)=90^{\circ}=\frac{x}{2} \quad[\because \text { ASP of triangle }]
\end{aligned}
$$

$$
\angle \mathrm{OPT}=90^{\circ} \quad \text { [The tangent at any point of a circle is }
$$ perpendicular to the radius through the point of contact]

\therefore From figure, $\quad \angle \mathrm{OPQ}=\angle \mathrm{OPT}-\angle \mathrm{TPQ}$

$$
\begin{aligned}
& =90^{\circ}-\left(90^{\circ}-\frac{x}{2}\right)=90^{\circ}-90^{\circ}+\frac{x}{2} \\
\angle \mathrm{OPQ} & =\frac{1}{2} \angle \mathrm{PTQ}
\end{aligned}
$$

This gives

$$
\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}
$$

Hence, Proved.

Question 66.

In figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent $A B$ with point of contact C intersects $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B$ $=90^{\circ}$.

Solution:

Given: XY and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ are are two parallel tangents to circle with centre O. Tangent $A B$ with point of contact C intersects $X Y$ at A and $X^{\prime} Y^{\prime}$ at B.
To Prove:

$$
\angle \mathrm{AOB}=90^{\circ}
$$

Construction: Join OC.
Proof: In \triangle OPA and $\triangle O C A$, $\mathrm{OP}=\mathrm{OC}$ (Radii of the same circle) $\mathrm{AP}=\mathrm{AC}$ (Tangents from point A) $A O=A O$ (common side) $\triangle \mathrm{OPA} \cong \triangle \mathrm{OCA}$

(SSS congruence rule)

Therefore, $\mathrm{P} \rightarrow e, \mathrm{~A} \rightarrow \mathrm{~A}, \mathrm{O} \rightarrow o$,

$$
\angle \mathrm{POA}=\angle \mathrm{COA}
$$

...(i) (CPCT)
Similarly, we prove: $\quad \triangle \mathrm{OQB} \cong \triangle \mathrm{OCB}$
Then:

$$
\angle \mathrm{QOB}=\angle \mathrm{COB}
$$

...(ii) (CPCT)
Since, POQ is the diameter of the circle, it is a straight line.

$$
\therefore \angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}
$$

from equation (i) and (ii),

$$
\begin{aligned}
2 \angle \mathrm{COA}+2 \angle \mathrm{COB} & =180^{\circ} \\
2(\angle \mathrm{COA}+\angle \mathrm{COB}) & =180^{\circ} \\
\angle \mathrm{COA}+\angle \mathrm{COB} & =\frac{180^{\circ}}{2} \\
\angle \mathrm{COA}+\angle \mathrm{COB} & =90^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{AOB}=90^{\circ} \quad \text { Hence, Proved. }
$$

Long Answer Type Questions [4 Marks]

Question 67.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Solution:

Refer to Ans. 12.

Question 68.

A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+$ BC.

Solution:

Refer to Ans. 46.

Question 69.

Prove that the lengths of tangents drawn from an external point to a circle are equal. Using it, prove: quadrilateral $A B C D$ is drawn to circumscribe a circle. Such'that $A B+$ $C D=A D+B C$

Solution:

Given: A circle with centre O. Through the external point A, tangents AP and AQ are drawn.
To prove: $A P=A Q$
Construction: Join OA, OP and OQ
Proof: In $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OAQ}$,

$$
\begin{aligned}
\mathrm{OP} & =\mathrm{OQ} \\
\mathrm{OA} & =\mathrm{OA} \\
\angle \mathrm{OPA} & =\angle \mathrm{OQA}=90^{\circ} \\
& \\
\therefore \quad \triangle \mathrm{OAP} & \cong \triangle \mathrm{OAQ} \\
\Rightarrow \quad \mathrm{AP} & =\mathrm{AQ}
\end{aligned}
$$

[Radii of the same circle]
[Common]
[radius is perpendicular to the tangent at point of contact]
[By RHS]
[CPCT]

Hence proved.

Second Part:

In the given figure, $\quad \mathrm{AE}=\mathrm{AH}$
[Tangents drawn from an external point are equal]

$$
\begin{equation*}
\mathrm{BE}=\mathrm{BF} \tag{ii}
\end{equation*}
$$

[Tangents drawn from an external point are equal]

$$
\begin{aligned}
\mathrm{DG} & =\mathrm{DH} \\
\mathrm{CG} & =\mathrm{CF}
\end{aligned}
$$

[Tangents drawn from an external point are equal]
$\mathrm{CG}=\mathrm{CF} \quad \ldots$ (iv) [Tangents drawn from an external point are equal]
Adding equation (i), (ii), (iii) and (iv), we get
$\mathrm{AE}+\mathrm{BE}+\mathrm{DG}+\mathrm{CG}=\mathrm{AH}+\mathrm{BF}+\mathrm{DH}+\mathrm{CF}$
$\Rightarrow(\mathrm{AE}+\mathrm{BE})+(\mathrm{DG}+\mathrm{CG})=(\mathrm{AH}+\mathrm{DH})+(\mathrm{BF}+\mathrm{CF})$
$\Rightarrow A B+C D=A D+B C$.
Hence proved.

Question 70.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

Solution:

Refer to Ans. 12.

Short Answer Type Questions I [2 Marks]

Question 71.

Two concentric circles are of radii 7 cm and rcm respectively, where $\mathrm{r}>7$.A chord of the larger circle, of length 48 cm , touches the smaller circle. Find the value of r.

Solution:

Given:

$$
\begin{aligned}
& \mathrm{OP}=7 \mathrm{~cm} ; \mathrm{OA}=r \mathrm{~cm} \\
& \mathrm{AB}=48 \mathrm{~cm}
\end{aligned}
$$

Now, $\mathrm{OP} \perp \mathrm{AB}$

Also, $\mathrm{AP}=\mathrm{PB}$
So, (as radius makes an angle of 90° with the tangent at point of contact) (perpendicular drawn from centre to the chord bisects the chord)

In \triangle OPA,

$$
\mathrm{AP}=24 \mathrm{~cm}
$$

By Pythagoras theorem in \triangle OPA,

$$
\begin{align*}
\mathrm{OA}^{2} & =\mathrm{AP}^{2}+\mathrm{OP}^{2} \\
r^{2} & =24^{2}+7^{2}=576+49=625 \\
\Rightarrow \quad r & =25 \mathrm{~cm} \tag{r}
\end{align*}
$$

Question 72.

In figure, a circle touches all the four sides of a quadrilateral $A B C D$ whose sides are $A B=6 \mathrm{~cm}, B C=9 \mathrm{~cm}$ and $C D=8 \mathrm{~cm}$. Find the length of side $A D$.

Solution:

If a circle touches all the four sides of quadrilateral $A B C D$, then
we know that

$$
\begin{aligned}
\therefore & \mathrm{AD}+9 & =6+8 \\
\Rightarrow & \mathrm{AD} & =5 \mathrm{~cm}
\end{aligned}
$$

Question 73.

If $\mathrm{d} 1, \mathrm{~d} 2(\mathrm{~d} 2>\mathrm{d} 1)$ be the diameters of two concentric circles and c be the length of a chord of a circle which is tangent to the other circle, prove that $d^{2} 2=c^{2}+d^{2}$.

Solution:

\because Diameter of bigger circle $=d_{2}$
So, Radius of bigger circle $=\frac{1}{2} d_{2}=\mathrm{OB}$
and Diameter of smaller circle $=d_{1}$
So, Radius of smaller circle $=\frac{1}{2} d_{1}=\mathrm{OA}$

$$
\mathrm{AB}=\frac{c}{2}
$$

$$
\left[\because \text { Diameter of } \mathrm{CB}={ }^{\prime} \mathrm{C}^{\prime}\right]
$$

In right $\triangle \mathrm{OAB}$,

$$
\angle \mathrm{A}=90^{\circ}
$$

[\because radius is perpendicular the tangent at point of contact]
By pythagoras theorem

$$
\mathrm{OB}^{2}=\mathrm{AB}^{2}+\mathrm{OA}^{2}
$$

\Rightarrow
\Rightarrow

$$
\left(\frac{1}{2} d_{2}\right)^{2}=\left(\frac{1}{2} c\right)^{2}+\left(\frac{1}{2} d_{1}\right)^{2} \Rightarrow \frac{1}{4} d_{2}^{2}=\frac{1}{4} c^{2}+\frac{1}{4} d_{1}^{2}
$$

$$
\Rightarrow \quad d_{2}^{2}=c^{2}+d_{1}^{2}
$$

Short Answer Type Questions II [3 Marks]

Question 74.

In figure, a triangle ABC is drawn to circumscribe a circle of radius 2 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are the lengths 4 cm and 3 cm respectively. If area of $\triangle A B C$ $=21 \mathrm{~cm}^{2}$, then find the lengths of sides $A B$ and $A C$.

Solution:

Let $\mathrm{AE}=\mathrm{AF}=y$ (say)
[Tangents drawn from an external point are equal]

$$
\begin{aligned}
& \text { ar } \left.\triangle \mathrm{BOC}=\frac{1}{2} \times 7 \times 2=7 \mathrm{~cm}^{2}=b \text { (say }\right) \\
& \text { ar } \triangle \mathrm{AOB}=\frac{1}{2} \times(4+y) \times 2=(4+y) \mathrm{cm}^{2}=a(\text { say }) \\
& \text { ar } \triangle \mathrm{AOC}=\frac{1}{2} \times(3+y) \times 2=(3+y) \mathrm{cm}^{2}=c(\text { say })
\end{aligned}
$$

Now,

$$
\begin{align*}
\text { ar } \triangle \mathrm{ABC} & =\text { ar } \triangle \mathrm{AOB}+\text { ar } \triangle \mathrm{BOC}+\text { ar } \triangle \mathrm{AOC} \\
& =4+y+7+3+y \\
\text { ar } \triangle \mathrm{ABC} & =14+2 y \tag{i}
\end{align*}
$$

For $\triangle \mathrm{ABC}$,
Semi-perimeter,

$$
s=\frac{a+b+c}{2}=\frac{4+y+7+3+y}{2}=\frac{14+2 y}{2}=7+y
$$

$$
\begin{array}{ll}
\therefore \quad & \text { ar } \triangle \mathrm{ABC}
\end{array}=\sqrt{s(s-a)(s-b)(s-c)} \quad[\because \text { By Heron's formula }]
$$

Squaring both sides, we get

$$
\begin{aligned}
\Rightarrow & 3 y(7+y) & =(7+y)^{2} \Rightarrow 21 y+3 y^{2}=49+y^{2}+14 y \\
\Rightarrow & 2 y^{2}+7 y-49 & =0 \Rightarrow 2 y^{2}+14 y-7 y-49=0 \\
\Rightarrow & 2 y(y+7)-7(y+7) & =0 \Rightarrow(2 y-7)(y+7)=0 \\
\Rightarrow & y=\frac{7}{2}, y & =-7
\end{aligned}
$$

Hence, length of side $\mathrm{AB}=4+3.5=7.5 \mathrm{~cm}$ and $\mathrm{AC}=3+3.5=6.5 \mathrm{~cm}$.

Long Answer Type Questions [4 Marks]

Question 75.

Prove that the lengths of tangents drawn from an external point to a circle are equal.

Solution:

Given: PA and PB are two tangents to a given circle drawn from an external point P.
To prove: $\mathrm{PA}=\mathrm{PB}$
Proof: $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$
(radius perpendicular to tangent at point of contact)
Join OP.
Now, In $\triangle \mathrm{OAP}$ and $\triangle \mathrm{OBP}$,

$$
\begin{aligned}
& \mathrm{OA}=\mathrm{OB} \\
& \angle \mathrm{~A}=\angle \mathrm{B} \\
& \mathrm{OP}=\mathrm{OP}
\end{aligned}
$$

So,

$$
\Delta \mathrm{OAP} \cong \triangle \mathrm{OBP}
$$

So,
$\mathrm{PA}=\mathrm{PB}$

Question 76.

Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact

Solution:

Refer to Ans. 12.

Question 77.

Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Solution:

The given quadrilateral ABCD is circumscribing the circle having its centre at O.
The sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and AD touch the circle at $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S respectively.
Join OA, OB, OC, OD; OP, OQ, OR, OS.

We observe that OA bisects $\angle \mathrm{POS}$
$[\because$ By CPCT, applied to \triangle POA and $\triangle \mathrm{SOA}]$

$$
\begin{array}{ll}
\Rightarrow & \angle 1=\angle 2 \\
\text { similarly } & \angle 3=\angle 4 \\
\text { and } & \angle 5=\angle 6 \tag{iii}\\
\text { a7 }=\angle 8
\end{array}
$$

Now, $\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=360^{\circ} \quad[\because$ ASP of quadrilateral]
$\Rightarrow \quad 2(\angle 1+\angle 4+\angle 5+\angle 8)=360^{\circ}$
$\Rightarrow \quad(\angle 1+\angle 8)+(\angle 4+\angle 5)=180^{\circ} \Rightarrow \quad \angle \mathrm{AOD}+\angle \mathrm{BOC}=180^{\circ}$
Similarly, $\quad \angle \mathrm{AOB}+\angle \mathrm{COD}=180^{\circ}$
Hence, opposite sides of the quadrilateral ABCD subtend supplementary angles at the centre

Question 78.

In figure, $C P$ and $C Q$ are tangents from an external point C to a circle with centre O. $A B$ is another tangent which touches the circle at R. If $C P=11 \mathrm{~cm}$ and $B R=4 \mathrm{~cm}$, find the length of BC.
Solution:

In the given figure, $\quad \mathrm{CP}=\mathrm{CQ}$
[tangents drawn from an external point are equal]

$$
\begin{array}{ll}
\text { So, } & \mathrm{CP}=\mathrm{CQ}=11 \mathrm{~cm} \\
\text { Also, } & \mathrm{BR}=\mathrm{BQ} \\
\text { [tangents drawn from an external point are equal] } \\
\text { So, } & \mathrm{BR}=\mathrm{BQ}=4 \mathrm{~cm} \\
\therefore \text { Now, } & \mathrm{BC}=\mathrm{CQ}-\mathrm{BQ}=(11-4) \mathrm{cm}=7 \mathrm{~cm}
\end{array}
$$

Question 79.

A tangent $P Q$ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $O Q=13 \mathrm{~cm}$. Find the length $P Q$.

Solution:

	Given,	OP	$=5 \mathrm{~cm}$
	OQ	$=13 \mathrm{~cm}$	[radius]
	Now,	In $\triangle \mathrm{OPQ}, \angle \mathrm{P}$	$=90^{\circ} \quad$[radius is perpendicular to tangent at point of to contact]
		$(\mathrm{OQ})^{2}$	$=(\mathrm{OP})^{2}+(\mathrm{PQ})^{2}$
	\therefore	PQ	$=\sqrt{(13)^{2}-(5)^{2}}=12 \mathrm{~cm}$

[By pythagoras theorem]

Short Answer Type Questions I [2 Marks]

Question 80.

Prove that the lengths of tangents drawn from an external point to a circle are equal. Using the above prove the following: In Fig., PA and PB are tangents from an external point P, to a circle with centre O . LN touches the circle at M. Prove that PL $+\mathrm{LM}=\mathrm{PN}+\mathrm{MN}$.

Solution:

Refer to Ans. 10 and 33.

Question 81.

In figure, there are two concentric circles, with centre O and of radii 5 cm and 3 cm .
From an external point P, tangents $P A$ and $P B$ are drawn to these circles. If $A P=12$
cm , find the length of BP.

Solution:

Construction: Join OA, OB and OP.

$\mathrm{AP}=12 \mathrm{~cm}, \mathrm{OA}=5 \mathrm{~cm}, \mathrm{OB}=3 \mathrm{~cm}$
In $\triangle \mathrm{AOP}, \angle \mathrm{A}=90^{\circ} \quad$ [radius is perpendicular to the tangent at point of contact]
$\triangle \mathrm{BOP}, \angle \mathrm{B}=90^{\circ} \quad$ [radius is perpendicular to the tangent at point of contact]
So, $\mathrm{OP}^{2}=\mathrm{OA}^{2}+\mathrm{AP}^{2}$
and $\mathrm{OP}^{2}=\mathrm{OB}^{2}+\mathrm{BP}^{2}$

Using Pythagoras theorem for $\triangle \mathrm{AOP}$ and $\triangle \mathrm{BOP}$.

$$
\begin{array}{rlrl}
\therefore & \mathrm{OA}^{2}+\mathrm{AP}^{2} & =\mathrm{OB}^{2}+\mathrm{BP}^{2} \\
5^{2}+12^{2} & =3^{2}+\mathrm{BP}^{2} \Rightarrow 25+144=9+\mathrm{BP}^{2} \Rightarrow 169-9=\mathrm{BP}^{2} \\
\Rightarrow & \mathrm{BP} & =\sqrt{160} \mathrm{~cm}=12.65 \mathrm{~cm}
\end{array}
$$

