Chapter 9: Circles

Exercise 9.1

Question 1:

If the radii of two concentric circles are 4 cm and 5 cm , then the length of each chord of one circle which is tangent to the other circle is
(a) 3 cm
(b) 6 cm
(c) 9 cm
(d) 1 cm

Solution:
(b) Let 0 be the centre of two concentric circles C_{1} and C_{2}, whose radii are $r_{1}=4 \mathrm{~cm}$ and $r_{2}=5 \mathrm{~cm}$. Now, we draw a chord $A C$ of circle C_{2}, which touches the circle C_{1} at B.

Also, join OB, which is perpendicular to AC. [Tangent at any point of a circle is perpendicular to the radius through the point of contact]

Now, in right-angled triangle OBC, by using Pythagoras theorem,

$$
\mathrm{OC}^{2}=\mathrm{BC}^{2}+\mathrm{BO}^{2}
$$

or, $5^{2}=\mathrm{BC}^{2}+4^{2}$
or, $\mathrm{BC}^{2}=25-46=9 \mathrm{~cm}^{2}$
or, $B C=3 \mathrm{~cm}$
Length of the chord $A C=2 B C=2(3)=6 \mathrm{~cm}$

Question 2:

In the figure, if $\angle A O B=125^{\circ}$, then $\angle C O D$ is equal to

(a) 62.5°
(b) 45°
(c) 35°
(d) 55°

Solution:
(d) We know that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
$\angle A O B+\angle C O D=180^{\circ}$
$\angle C O D=180^{\circ}-\angle A O B=180^{\circ}-125^{\circ}=55^{\circ}$

Question 3:

In the figure, $A B$ is a chord of the circle and $A O C$ is its diameter such that
$\angle A C B=50^{\circ}$. If $A T$ is the tangent to the circle at point A, then $\angle B A T$ is equal to

(a) 45°
(b) 60°
(c) 50°
(d) 55°

Solution:
(c) In the figure, AOC is the diameter of the circle. We know that diameter subtends an angle of 90° at the circle.
$\angle A B C=90^{\circ}$
In triangle $A B C, \angle A+\angle B+\angle C=180^{\circ}$
$\angle A+90^{\circ}+50^{\circ}=180^{\circ}$
$\angle A+140^{\circ}=180^{\circ}$
$\angle A=40^{\circ}$
$\angle A$ or $\angle O A B=40^{\circ}$
now AT is the tangent to the circle at point A. So, OA is perpendicular to AT
$\angle O A T=90^{\circ}$
$\angle \mathrm{OAB}+\angle \mathrm{BAT}=90^{\circ}$
On putting $\angle \mathrm{OAB}=40^{\circ}$, we get
$\angle B A T=90^{\circ}-40^{\circ}=50^{\circ}$
Hence, the value of $\angle B A T$ is 50°

Question 4:

From a point P which is at a distance of 13 cm from the centre 0 of a circle of radius 5 cm , the pair of tangents $P Q$ and $P R$ to the circle is drawn. Then, the area of the quadrilateral PQOR is
(a) $60 \mathrm{~cm}^{2}$
(b) $65 \mathrm{~cm}^{2}$
(c) $30 \mathrm{~cm}^{2}$
(d) $32.5 \mathrm{~cm}^{2}$

Solution:

(a) Firstly, draw a circle of radius 5 cm having centre O . P is a point at a distance of 13 cm from O . A pair of tangents PQ and PR are drawn.

Thus, the quadrilateral POQR is formed.
Therefore, $\mathrm{OQ} \perp \mathrm{QP}$
In right-angled triangle PQO,
$\mathrm{OP}^{2}=169-25=144$
$Q P=12 \mathrm{~cm}$
Now, area of triangle QOP $=\frac{1}{2} \times Q P \times Q O$

$$
=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}
$$

Area of quad QOPR $=2 \Delta \mathrm{OQP}=2(30)=60 \mathrm{~cm}^{2}$

Question 5:

At one end A of a diameter $A B$ of a circle of radius 5 cm , tangent XAY is drawn to the circle. The length of the chord CD parallel to $X Y$ and at a distance of 8 cm from A, is
(a) 4 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm

Solution:

(d) First, draw a circle of radius 5 cm having centre 0 . A tangent $X Y$ is drawn at point A.

A chord $C D$ is drawn which is parallel to $X Y$ and at a distance of 8 cm from A.
Now,
$\angle O A Y=90^{\circ}$
[Tangent and any point of a circle is perpendicular to the radius through the point of contact]

$$
\begin{array}{rlrl}
\triangle O A Y+\triangle O E D & =180^{\circ} & \left.\quad \text { [sum of cointerior is } 180^{\circ}\right] \\
\Rightarrow \quad \triangle O E D & =180^{\circ} \\
A E E & =8 \mathrm{~cm}, \text { Join } O C \\
\text { Also, } & & \\
\text { Now, in right angled } \triangle O E C, \quad O C^{2} & =O E^{2}+E C^{2} \\
\Rightarrow \quad E C^{2} & =O C^{2}-O E^{2} \quad \text { [by Pythagoras theorem] } \\
& =5^{2}-3^{2} \\
{[\because O C} & =\text { radius }=5 \mathrm{~cm}, O E=A E-A O=8-5=3 \mathrm{~cm} \text {] } \\
& =25-9=16 \\
\Rightarrow \quad E C & =4 \mathrm{~cm}
\end{array}
$$

Hence, length of chord $C D=2 C E=2 \times 4=8 \mathrm{~cm}$
[since, perpendicular from centre to the chord bisects the chord]

Question 6:

In the figure, AT is a tangent to the circle with centre 0 such that $O T=4 \mathrm{~cm}$ and $\angle O T A=30^{\circ}$. Then, AT is equal to

(a) 4 cm
(b) 2 cm
(c) $2 \sqrt{ } 3 \mathrm{~cm}$
(d) $4 \sqrt{ } 3 \mathrm{~cm}$

Solution:

(c) Join OA

We know that the tangent at any point of a circle is perpendicular to the radius through the point of contact.
therefore, $\angle O A T=90^{\circ}$
In triangle OAT, $\operatorname{Cos} 30^{\circ}=\frac{A T}{O T}$

$$
\begin{aligned}
=\frac{\sqrt{3}}{2} & =\frac{A T}{4} \\
& =A T=2 \sqrt{3} \mathrm{~cm}
\end{aligned}
$$

Question 7:

In the figure, if 0 is the centre of a circle, $P Q$ is a chord and the tangent $P R$ at P, makes an angle of 50° with $P Q$, then $\angle P O Q$ is equal to

(a) 100°
(b) 80°
(c) 90°
(d) 75°

Solution:
(a) Given, $\angle \mathrm{QPR}=50^{\circ}$

We know that the tangent at any point of a circle is perpendicular to the radius
through the point of contact.

$$
\begin{array}{lcr}
\therefore & \angle O P R=90^{\circ} \\
\Rightarrow & \angle O P Q+\angle Q P R=90^{\circ} & \\
\Rightarrow & \angle O P Q=90^{\circ}-50^{\circ}=40^{\circ} & \text { [from figure] } \\
\text { Now, } & O P=O Q=\text { Radius of circle } & {\left[\because \angle Q P R=50^{\circ}\right]} \\
\therefore & \angle O Q P=\angle O P Q=40^{\circ} & \\
\text { In } \triangle O P Q, & \angle \text { since, angles opposite to equal sides are equal] } \\
& \angle O+\angle P+\angle Q=180^{\circ} & {\left[\text { since, sum of angles of a triangle }=180^{\circ}\right]} \\
\Rightarrow & \angle O=180^{\circ}-\left(40^{\circ}+40^{\circ}\right) & {\left[\because \angle P=40^{\circ}=\angle Q\right]} \\
& =180^{\circ}-80^{\circ}=100^{\circ} &
\end{array}
$$

Question 8:

In the figure, if PA and PB are tangents to the circle with centre 0 such that $\angle A P B=50^{\circ}$, then $\angle O A B$ is equal to

(a) 25°
(b) 30°
(c) 40°
(d) 50°

Solution:

(a) Given, PA and PB are tangent lines.

[since, tangent at any point of a circle is perpendicular to the radius through the point of contact]

$$
\begin{array}{lr}
\therefore & \angle P A O=90^{\circ} \\
\Rightarrow & \angle P A B+\angle B A O=90^{\circ} \\
\Rightarrow & 65^{\circ}+\angle B A O=90^{\circ} \\
\Rightarrow & \angle B A O=90^{\circ}-65^{\circ}=25^{\circ}
\end{array}
$$

Question 9:

If two tangents inclined at an angle of 60° are drawn to a circle of radius $\mathbf{3 c m}$, then the length of each tangent is
(a) $\frac{3}{2} \sqrt{ } 3 \mathrm{~cm}$
(b) 6 cm
(c) 3 cm
(d) $3 \sqrt{ } 3 \mathrm{~cm}$

Solution:
(d) Let P be an external point and a pair of tangents are drawn from point P and the angle between these two tangents is 60°.

Join $O A$ and $O P$.
Also, $O P$ is a bisector line of $\angle A P C$.
\therefore

$$
\begin{gathered}
\angle A P O=\angle C P O=30^{\circ} \\
O A \perp A P
\end{gathered}
$$

Also,
A tangent at any point of a circle is perpendicular to the radius through the point of contact. In right-angled triangle OAP,
$\tan 30^{\circ}=\frac{O P}{A P}=\frac{3}{A P}$
or, $\frac{1}{\sqrt{3}}=\frac{3}{A P}$
or, $A P=3 \sqrt{3} \mathrm{~cm}$
Hence, the length of each tangent is $3 \sqrt{ } 3 \mathrm{~cm}$.

Question 10:

In the figure, if PQR is the tangent to a circle at Q whose centre is $0, A B$ is a chord parallel to $P R$ and $\angle B Q R=70^{\circ}$, then $\angle A B Q$ is equal to

(a) 20°
(b) 40°
(c) 35°
(d) 45°

Solution:

(b) Given, $A B \| P R$

$$
\therefore \quad \angle A B Q=\angle B Q R=70^{\circ}
$$

[alternate angles]
Also, $Q D$ is perpendicular to $A B$ and $Q D$ bisects $A B$.
In $\triangle Q D A$ and $\triangle Q D B$,

$$
\angle Q D A=\angle Q D B
$$

[each 90°]

	$A D$	$=B D$	
		$Q D$	$=Q D$
	\therefore	$\triangle A D Q$	$\cong \triangle B D Q$
	Then	$\angle Q A D$	$=\angle Q B D$
	Also	$\angle A B Q$	$=\angle B Q R$
	\therefore	$\angle A B Q$	$=70^{\circ}$
	Hence,	$\angle Q A B$	$=70^{\circ}$
	Now, in $\triangle A B Q$,	$\angle A+\angle B+\angle Q$	$=180^{\circ}$
\Rightarrow	$\angle Q$	$=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)=40^{\circ}$	

Exercise 9.2 Very Short Answer Type Questions

Question 1:

If a chord $A B$ subtends an angle of 60° at the centre of a circle, then the angle between the tangents at A and B is also 60°.

Solution:

False

Since a chord, AB subtends an angle of 60° at the centre of a circle.

Question 2:

The length of the tangent from an external point P on a circle is always greater than the radius of the circle.

Solution:

False

Because the length of the tangent from an external point P on a circle may or may not be greater than the radius of the circle.

Question 3:

The length of the tangent from an external point P on a circle with centre 0 is always less than OP.

Solution:

True
$P T$ is a tangent drawn from external point P. Join $O T$.
$\because \quad O T \perp P T$
So, OPT is a right angled triangle formed.
In right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.
$\therefore \quad O P>P T$
or $\quad P T<O P$

Question 4:

The angle between two tangents to a circle may be 0°.
Solution:
True
'This may be possible only when both tangent lines coincide or are parallel to each other.

Question 5:

If the angle between two tangents drawn from a point P to a circle of radius a and centre 0 is 90°, then $O P=a \sqrt{ } 2$.
Solution:
True
From point P, two tangents are drawn.
Given,

$$
O T=a
$$

Also, line $O P$ bisects the $\angle R P T$.
$\therefore \quad \angle T P O=\angle R P O=45^{\circ}$
Also, $O T \perp P T$
In right angled $\triangle O T P, \quad \sin 45^{\circ}=\frac{O T}{O P}$
$\Rightarrow \quad \frac{1}{\sqrt{2}}=\frac{a}{O P} \Rightarrow O P=a \sqrt{2}$

Question 6:

If the angle between two tangents drawn from a point P to a circle of radius a and centre 0 is 60°, then $O P=a \sqrt{ } 3$.
Solution:

True

From point P, two tangents are drawn.
Given,

$$
O T \approx a
$$

Also, line $O P$ bisects the $\angle R P T$.

$$
\therefore \quad \angle T P O=\angle R P O=30^{\circ}
$$

Also,
$O T \perp P T$
In right angled $\triangle O T P$

$$
\begin{aligned}
& \sin 30^{\circ} & =\frac{O T}{O P} \\
\Rightarrow & \frac{1}{2} & =\frac{a}{O P} \\
\Rightarrow & O P & =2 a
\end{aligned}
$$

Question 7:

The tangent to the circumcircle of an isosceles $\triangle A B C$ at A, in which $A B=A C$, is parallel to BC .
Solution:

True

Let EAF be tangent to the circumcircle of $\triangle A B C$.

To prove EAF IIBC
$\angle E A B=\angle A B C$
here, $A B=A C$
or, $\angle A B C=\angle A C B$ \qquad .(i) [angle between a tangent and
is chord equal to the angle made by a chord in the alternate segment]
Also, $\angle E A B=\angle B C A$
From eq(i) and eq(ii), we get,
$\angle E A B=\angle A B C$
or, EAF IIBC

Question 8:

If several circles touch a given line segment $P Q$ at a point A, then their centres lie on the perpendicular bisector of PQ.

Solution:

False

Given that PQ is any line segment and $S_{1}, S_{2}, S_{3}, S_{4}, \ldots$ circles are touches a line segment $P Q$ at a point A. Let the centres of the circles $S_{1}, S_{2}, S_{3}, S_{4}, \ldots$ be $C_{1} C_{2}, C_{3}$, C_{4}, \ldots respectively.

To prove centres of these circles lie on the perpendicular bisector PQ Now, joining each centre of the circles to point A on the line segment PQ by a line segment i.e., $\mathrm{C}_{1} \mathrm{~A}, \mathrm{C}_{2} \mathrm{~A}, \mathrm{C}_{3} \mathrm{~A}, \mathrm{C}_{4} \mathrm{~A}$... so on.
We know that, if we draw a line from the centre of a circle to its tangent line, then the line is always perpendicular to the tangent line. But it not bisect the line segment $P Q$.
So, $C_{1} A \perp P Q$ \qquad [for S_{1}]
$\mathrm{C}_{2} \mathrm{~A} \perp \mathrm{PQ}$ [for S_{2}]
$C_{3} A \perp P Q$ [for S_{3}]
$C_{4} A \perp P Q$.[For S4]

so on.

Since each circle is passing through a point A. Therefore, all the line segments $\mathrm{C}_{1} \mathrm{~A}, \mathrm{C}_{2} \mathrm{~A}, \mathrm{C}_{3} \mathrm{~A}, \mathrm{C}_{4} \mathrm{~A} \ldots$. so on are coincident.
So, the centre of each circle lies on the perpendicular line of $P Q$ but they do not lie on the perpendicular bisector of PQ .
Hence, several circles touch a given line segment $P Q$ at a point A, then their centres lie

Question 9:

If several circles pass through the endpoints P and Q of a line segment $P Q$, then their centres lie on the perpendicular bisector of PQ.
Solution: true

We draw two circles with centres C_{1} and C_{2} passing through the endpoints P and Q of a line segment PQ. We know that perpendicular bisectors of a chord of a circle always passes through the centre of the circle
Thus, the perpendicular bisector of PQ passes through C_{1} and C_{2}. Similarly, all the circle passing through $P Q$ will haVe their centre on perpendiculars bisectors of $P Q$

Question 10:

$A B$ is a diameter of a circle and $A C$ is its chord such that $\angle B A C-30^{\circ}$. If the tangent at C intersects $A B$ extended at D, then $B C=B D$.

Solution:

True

To Prove, BC = BD

Join $B C$ and $O C$.
Given,

$$
\begin{aligned}
& \angle B A C=30^{\circ} \\
& \angle B C D=30^{\circ}
\end{aligned}
$$

\Rightarrow
[angle between tangent and chord is equal to angle made by chord in the alternate
segment]
$\therefore \quad, \quad \begin{aligned} & \angle A C D=\angle A C O+\angle O C D=30^{\circ}+90^{\circ}=120^{\circ} \\ & {\left[\because O C \perp C D \text { and } O A=O C=\text { radius } \Rightarrow \angle O A C=\angle O C A=30^{\circ}\right] }\end{aligned}$
In $\triangle A C D, \quad \angle C A D+\angle A C D+\angle A D C=180^{\circ}$
[since, sum of all interior angles of a triangle is 180°]
$\Rightarrow \quad 30^{\circ}+120^{\circ}+\angle A D C=180^{\circ}$
\Rightarrow
Now, in $\triangle B C D$
$\angle A D C=180^{\circ}-\left(30^{\circ}+120^{\circ}\right)=30^{\circ}$
$\angle B C D=\angle B D C=30^{\circ}$ $B C=B D$
[since, sides opposite to equal angles are equal]

Exercise 9.3 Short Answer Type Questions

Question 1:

Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.
Solution:
Let C_{1} and C_{2} be the two circles having the same centre O . AC is a chord that touches the C_{1} at point D .

Join $O D, O D \perp A C$
Thus, $A D=D C=4 \mathrm{~cm}$
In right-angled triangle AOD,
$D O^{2}=5^{2}-4^{2}$

$$
=25-16=9
$$

$\mathrm{DO}=3 \mathrm{~cm}$
The radius of the inner circle $O D=3 \mathrm{~cm}$

Question 2:

Two tangents PQ and PR are drawn from an external point to a circle with centre 0 . Prove that QORP is a cyclic quadrilateral.

Solution:

Given Two tangents PQ and PR are drawn from an external point to a circle with centre 0.

To prove QORP is a cyclic quadrilateral.
proof Since, $P R$ and $P Q$ are tangents.
So, $\quad O R \perp P R$ and $O Q \perp P Q$
[since, if we drawn a line from centre of a circle to its tangent line. Then, the line always perpendicular to the tangent line]

$$
\begin{array}{ll}
\therefore & \angle O R P=\angle O Q P=90^{\circ} \\
\text { Hence, } & \angle O R P+\angle O Q P=180^{\circ}
\end{array}
$$

So, QOPR is cyclic quadriateral.
[If sum of opposite angles is quadrilateral in 180°, then the quadrilateral is cyclic] Hence proved.

Question 3:

Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.

Solution:

Given Two tangents $P Q$ and $P R$ are drawn from an external point P to a circle with centre 0 .

To prove the Centre of a circle touching two intersecting lines lies on the angle bisector of the lines.
In $\angle R P Q$.
Construction Join OR, and OQ.
In $\triangle \mathrm{POP}$ and $\triangle \mathrm{POO}$
$\angle \mathrm{PRP}=\angle \mathrm{PQO}=90^{\circ}$ [tangent at any point of a circle is perpendicular to the radius through the point of contact]
$\mathrm{OR}=\mathrm{OQ}$ [radii of some circle]
Since OP is common
$\triangle P R P \cong \triangle P Q O$ [RHS

Hence, $\angle \mathrm{RPO}=\angle \mathrm{QPO}$ [CPCT]
Thus, O lies on the angle bisector of $P R$ and $P Q$.
Hence proved.

Question 4:

If from an external point B of a circle with centre 0 , two tangents $B C$ and BD are drawn such that $\angle D B C=120^{\circ}$, prove that $B C+B D=B O$ i.e., $B O=2 B C$. Solution:
Two tangents $B D$ and $B C$ are drawn from an external point B.

To prove

$$
B O=2 B C
$$

Given,

$$
\angle D B C=120^{\circ}
$$

Join $O C, O D$ and $B O$.
Since, $B C$ and $B D$ are tangents.
$\therefore \quad O C \perp B C$ and
We know, $O B$ is a angle bisector of $\angle D B C$.

\therefore	$\angle O B C=\angle D B O=60^{\circ}$
In right angled $\triangle O B C$,	$\cos 60^{\circ}=\frac{B C}{O B}$
\Rightarrow	$\frac{1}{2}=\frac{B C}{O B}$
\Rightarrow	$O B=2 B C$
Also,	$B C=B D$
\therefore	$[$ tangent drawn from internal point to circle are equal]
\Rightarrow	$O B=B C+B C$
	$O B=B C+B D$

Question 5:

In the figure, $A B$ and $C D$ are common tangents to two circles of unequal radii. Prove that $A B=C D$

Solution:

Given AS and CD are common tangent to two circles of unequal radius

Construction: Produce $A B$ and $C D$, to intersect at P
Proof: $\mathrm{PA}=\mathrm{PC}$ [the length of tangents drawn from an internal point to a circle are equal]
$\mathrm{PB}=\mathrm{PD}$ [The lengths of tangents drawn from an internal point to a circle are equal]
$P A-P B=P C=P D$
$A B=C D$

Question 6:

In the figure, $A B$ and $C D$ are common tangents to two circles of equal radii.
Prove that $A B=C D$.

Solution:

Given AB and CD are tangents to two circles of equal radii?
To prove

$$
A B=C D
$$

Construction Join $O A, O C, O^{\prime} B$ and $O^{\prime} D$

Proof
Now, $\angle O A B=90^{\circ}$
[tangent at any point of a circle is perpendicular to radius through the point of contact] Thus, $A C$ is a straight line.

Also,
\therefore
Similarly, $B D$ is a straight line and
Also,
In quadrilateral $A B C D$. and
$A B C D$ is a rectangle Hence,

$$
\begin{gathered}
\angle O A B+\angle O C D=180^{\circ} \\
A B \| C D
\end{gathered}
$$

$$
\begin{aligned}
\angle O^{\prime} B A & =\angle O^{\prime} D C=90^{\circ} \\
A C & =B D \quad \text { [radii of two circles are equal] } \\
\angle A & =\angle B=\angle C=\angle D=90^{\circ} \\
A C & =B D
\end{aligned}
$$

$$
A B=C D \quad \text { [opposite sides of rectangle are equal] }
$$

Question 7:

In the figure, common tangents $A B$ and $C D$ to two circles intersect at E. Prove that $A B=C D$.

Solution:

Given Common tangents $A B$ and $C D$ to two circles intersecting at E.
To prove $\quad A B=C D$

Proof: EA = EC \qquad .(i)[The lengths of tangents drawn from an internal point to a circle are equal]

EB = ED

On adding eq(i) and (ii),
$E A+E B=E C+E D$
$A B=C D$

Question 8:

A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ.

Solution:

Given that Chord, PQ is parallel to the tangent at R .
To prove R bisects the arc PRQ

Proof

$$
\begin{aligned}
& \angle 1=\angle 2 \\
& \angle 1=\angle 3
\end{aligned}
$$

[alternate interior angles]
[angle between tangent and chord is equal to angle made by chord in alternate segment]
\therefore
\Rightarrow
\Rightarrow
So, R bisects $P Q$.
$\angle 2=\angle 3$
$P R=Q R \quad$ [sides opposite to equal angles are equal]
$P R=Q R$

Question 9:

Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.

Solution:
To prove $\angle 1=\angle 2$, let PQ be a chord of the circle. Tangents are drawn at the points R and Q.

Let P be another point on the circle, then, join $P Q$ and $P R$.
Since, at point Q, there is a tangent.
$\angle 2=\angle \mathrm{P}$ [angles in alternate segments are equal]
Since at point R, there is a tangent
$\angle 1=\angle \mathrm{P}$ [angles in alternate segments are equal]
Thus, $\angle 1=\angle 2=\angle P$

Question 10:

Prove that a diameter AB of a circle bisects all those chords which are parallel to the tangent at point A.

Solution:

Given, $A B$ is the diameter of the circle.
A tangent is drawn from point A. Draw a chord CD parallel to the tangent MAN.

So, the CD is a chord of the circle and OA is a radius of the circle.
$\angle \mathrm{MAO}=90^{\circ}$ [tangent at any point of a circle is perpendicular to the radius through the point of contact]
$\angle C E O=\angle M A O$ [Corresponding angles]
$\angle C E O=90^{\circ}$

Thus, OE bisects CD, [perpendicular from the centre of the circle to a chord bisects the chord] Similarly, the diameter $A B$ bisects all. Chords that are parallel to the tangent at point A.

Exercise 9.4 Long Answer Type Questions

Question 1:

If a hexagon $A B C D E F$ circumscribe a circle, prove that $A B+C D+E F=B C+D E+F A$
Solution:
Given A hexagon $A B C D E F$ circumscribes a circle.

To prove $A B+C D+E F=B C+D E+F A$
Proof

$$
\begin{aligned}
A B+C D+E F= & (A Q+Q B)+(C S+S D)+(E U+U F) \\
= & A P+B R+C R+D T+E T+F P \\
= & (A P+F P)+(B R+C R)+(D T+E T) \\
A B+C D+E F & =A F+B C+D E \\
A Q & =A P \\
Q B & =B R \\
C S & =C R \\
D S & =D T \\
E U & =E T
\end{aligned}
$$

[tangents drawn from an external point to a circle are equal]
Hence proved.

Question 2:

Let s denotes the semi-perimeter of a $\triangle A B C$ in which $B C=a, C A=b$ and $A B=$ c. If a circle touches the sides $B C, C A, A B$ at D, E, F, respectively. Prove that $B D=s-b$.
Solution:

A circle is inscribed in the $A A B C$, which touches the $B C, C A$ and $A B$.

Given,

$$
B C=a, C A=b \text { and } A B=c
$$

By using the property, tangents are drawn from an external point to the circle are equal in length.

Question 3:

From an external point P, two tangents, PA and PB are drawn to a circle with centre 0 . At one point E on the circle tangent is drawn which intersects PA and $P B$ at C and D, respectively. If $P A=10 \mathbf{c m}$, find the perimeter of the triangle PCD.
Solution:
Two tangents PA and PB are drawn to a circle with centre 0 from an external point P

Perimeter of $\triangle P C D=P C+C D+P D$

$$
\begin{aligned}
& =P C+C E+E D+P D \\
& =P C+C A+D B+P D \\
& =P A+P B \\
& =2 P A=2(10) \\
& =20 \mathrm{~cm}
\end{aligned}
$$

$[\because C E=C A, D E=D B, P A=P B$ tangents from internal point to a circle are equal $]$

Question 4:

If $A B$ is a chord of a circle with centre $0, A O C$ is diameter and AT is the tangent at A as shown in the figure. Prove that $\angle B A T=\angle A C B$.

Solution:

Since AC is a diameter line, so angle in a semi-circle makes an angle 90°.

$$
\begin{array}{lrl}
\therefore & \angle A B C=90^{\circ} \\
\text { In } \triangle A B C, & \angle C A B+\angle A B C+\angle A C B=180^{\circ} \\
& \left.\quad \because: \text { sum of all interior angles of any triangle is } 180^{\circ}\right] \\
\Rightarrow & \angle C A B+\angle A C B=180^{\circ}-90^{\circ}=90^{\circ} \tag{i}
\end{array}
$$

Since, diameter of a circle is perpendicular to the tangent.
i.e.
$C A \perp A T$
\therefore
$\angle C A T=90^{\circ}$
$\Rightarrow \quad \angle C A B+\angle B A T=90^{\circ}$

From Eqs. (i) and (ii),

$$
\begin{array}{rlr}
& \angle C A B+\angle A C B= & \angle C A B+\angle B A T \tag{ii}\\
\Rightarrow \quad \angle A C B=\angle B A T & \text { Hence proved. }
\end{array}
$$

Question 5:

Two circles with centres 0 and 0 ' of radii 3 cm and 4 cm , respectively intersect at two points P and Q, such that OP and 0 ' P are tangents to the two circles.
Find the length of the common chord PQ.
Solution:
Here, two circles are of radii $\mathrm{OP}=3 \mathrm{~cm}$ and $\mathrm{PO}=4 \mathrm{~cm}$
These two circles intersect at P and Q.

Here, $O P$ and $P O^{\prime}$ are two tangents drawn at point P.

$$
\angle O P O^{\prime}=90^{\circ}
$$

[tangent at any point of circle is perpendicular to radius through the point of contact] Join OO' and PN.

$$
\begin{array}{lrl}
\text { In right angled } \triangle O P O^{\prime}, & \left(O O^{\prime}\right)^{2} & =(O P)^{2}+\left(P O^{\prime}\right)^{2}
\end{array} \quad \text { [by Pythagoras theorem] }
$$

and in right angled $\triangle P N O^{\prime}$,

$$
\left(P O^{\prime}\right)^{2}=(P N)^{2}+\left(N O^{\prime}\right)^{2} \quad[\text { by Pythagoras theorem }]
$$

$$
\Rightarrow \quad(4)^{2}=(P N)^{2}+(5-x)^{2}
$$

$$
\begin{equation*}
\Rightarrow \quad(P N)^{2}=16-(5-x)^{2} \tag{ii}
\end{equation*}
$$

From Eqs. (i) and (ii),

$$
9-x^{2}=16-(5-x)^{2}
$$

$$
\begin{array}{rlrl}
\Rightarrow & & 7+x^{2}-\left(25+x^{2}-10 x\right) & =0 \\
\Rightarrow & 10 x & =18 \\
\therefore & x & =1.8
\end{array}
$$

Again, in right angled $\triangle O P N$,

$$
O P^{2}=(O N)^{2}+(N P)^{2} \quad[\text { by Pythagoras theorem }]
$$

$$
\Rightarrow \quad 3^{2}=(1.8)^{2}+(N P)^{2}
$$

$$
\Rightarrow \quad(N P)^{2}=9-3.24=5.76
$$

$$
\therefore \quad(N P)=2.4
$$

$$
\therefore \text { Length of common chord, } \quad P Q=2 P N=2 \times 2.4=4.8 \mathrm{~cm}
$$

Question 6:

In a right angle, $\triangle A B C$ is which $\angle B=90^{\circ}$, a circle is drawn with $A B$ as diameter intersecting the hypotenuse AC at P. Prove that the tangent to the circle at PQ bisects BC.

Solution:

Let O be the centre of the given circle. Suppose, the tangent at P meets $B C$ at 0 . Join BP.

To prove	$B Q=Q C$	[angles in alternate segment]
Proof	$\angle A B C=90^{\circ}$	

[tangent at any point of circle is perpendicular to radius through the point of contact] $\therefore \ln \triangle A B C$,

$$
\begin{aligned}
\angle 1+\angle 5 & =90^{\circ} \\
\angle 3 & =\angle 1
\end{aligned}
$$

[angle sum property, $\angle A B C=90^{\circ}$]
[angle between tangent and the chord equals angle made by the chord in alternate segment]

\therefore	$\angle 3+\angle 5=90^{\circ}$	\ldots (i)
Also,	$\angle A P B=90^{\circ}$	[angle in semi-circle]
\Rightarrow	$\angle 3+\angle 4=90^{\circ}$	$\left[\angle A P B+\angle B P C=180^{\circ}\right.$, linear pair]

From Eqs. (i) and (ii), we get

$$
\begin{array}{lrl}
& \angle 3+\angle 5 & =\angle 3+\angle 4 \\
\Rightarrow & \angle 5 & =\angle 4 \\
\Rightarrow & P Q & =Q C \\
\text { Also, } & Q P=Q B \\
\Rightarrow & \text { [tangents drawn from an internal point to a circle are equal] } \\
\Rightarrow & Q B=Q C & \text { Hence proved. }
\end{array}
$$

$$
\Rightarrow \quad \angle 5=\angle 4
$$

Also,

$$
\Rightarrow
$$

\Rightarrow

Question 7:

In the figure, tangents $P Q$ and $P R$ are drawn to a circle such that $\angle R P Q=30^{\circ}$. A chord RS is drawn parallel to the tangent PQ. Find $\angle R Q S$.
Solution:
$P Q$ and $P R$ are two tangents drawn from an external point P

$\therefore \quad P Q=P R$
[the lengths of tangents drawn from an external point to a circle are equal]
$\Rightarrow \quad \angle P Q R=\angle Q R P$
[angles opposite to equal sides are equal]
Now, in $\triangle P Q R \quad \angle P Q R+\angle Q R P+\angle R P Q=180^{\circ}$
[sum of all interior angles of any triangle is 180°]
$\Rightarrow \quad \angle P Q R+\angle P Q R+30^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 \angle P Q R=180^{\circ}-30^{\circ}$
$\Rightarrow \quad \angle P Q R=\frac{180^{\circ}-30^{\circ}}{2}=75^{\circ}$
Since, $\quad S R \| Q P$
$\therefore \quad \angle S R Q=\angle R Q P=75^{\circ} \quad$ [alternate interior angles]
Also, $\angle P Q R=\angle Q S R=75^{\circ} \quad$ [by alternate segment theorem]
in $\triangle Q R S$,
$\angle Q+\angle R+\angle S=180^{\circ}$
[sum of all interior angles of any triangle is 180°]
$\Rightarrow \quad \angle Q=180^{\circ}-\left(75^{\circ}+75^{\circ}\right)$
$=30^{\circ}$
$\therefore \quad \angle R Q S=30^{\circ}$

Question 8:

$A B$ is diameter and $A C$ is a chord of a circle with centre 0 such that $\angle B A C=$ 30°. The tangent at C intersects extended $A B$ at a point D. Prove that $B C=B D$. Solution:
A circle is drawn with centre O and $A B$ is a diameter.
$A C$ is a chord such that $\angle B A C=30^{\circ}$.
Given $A B$ is diameter and $A C$ is a chord of a circle with centre $O, \angle B A C=30^{\circ}$.

Question 9:

Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the endpoints of the arc.
Solution:
Let mid-point of an arc AMB be M and TMT' be the tangent to the circle.
Join $A B, A M$ and $M B$.

```
Since,
#
In \triangleAMB,
=>
```

$\operatorname{arc} A M=\operatorname{arc} M B$
Chord $A M=$ Chord $M B$
$A M=M B$
$\angle M A B=\angle M B A$
[equal sides corresponding to the equal angle] ...(i)

Since, $T M T^{\prime}$ is a tangent line.

$$
\therefore \quad \begin{aligned}
\angle A M T & =\angle M B A \quad \text { [angles in alternate segments are equal] } \\
& =\angle M A B \quad[\text { from Eq. (i)] }
\end{aligned}
$$

But $\angle A M T$ and $\angle M A B$ are alternate angles, which is possible only when
AB|tMT'
Hence, the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the endpoints of the arc
Hence proved.

Question 10:

In a figure the common tangents, $A B$ and $C D$ to two circles with centres 0 and O^{\prime} intersect at E. Prove that the points $0, E$ and O ' are collinear.

Solution:

Joint $A O, O C$ and $O^{\prime} D, O^{\prime} B$.
Now, in $\triangle E O^{\prime} D$ and $\triangle E O^{\prime} B_{1}$

$$
\begin{aligned}
O^{\prime} D & =O^{\prime} B \\
O^{\prime} E & =O^{\prime} E \\
E D & =E B
\end{aligned}
$$

[since, tangents drawn from an external point to the circle are equal in length]


```
\therefore [by SSS congruence rule]
=>
\angleO'ED = }\angle\mp@subsup{O}{}{\prime}E
\(O^{\prime} E\) is the angle bisector of \(\angle D E B\).

Similarly, \(O E\) is the angle bisector of \(\angle A E C\).
Now, in quadrilateral \(D E B O^{\prime}\),
\[
\angle O^{\prime} D E=\angle O^{\prime} B E=90^{\circ}
\]
[since, \(C E D\) is a tangent to the circle and \(O^{\prime} D\) is the radius, i.e., \(O^{\prime} D \perp C E D\) ]
\(\Rightarrow \quad \angle O^{\prime} D E+\angle O^{\prime} B E=180^{\circ}\)
\(\therefore \quad \angle D E B+\angle D O^{\prime} B=180^{\circ} \quad\) [since, \(D E B O^{\prime}\) is cyclic quadrilateral] ...(ii)
Since, \(A B\) is a straight line.
\[
\begin{array}{lrl}
\therefore & \angle A E D+\angle D E B & =180^{\circ} \\
\Rightarrow & \angle A E D+180^{\circ}-\angle D O^{\prime} B & =180^{\circ} \\
\Rightarrow & \angle A E D & =\angle D O^{\prime} B \\
\text { Similarly, } & \angle A E D & =\angle A O C  \tag{iv}\\
\text { Again from Eq. (ii), } & \angle D E B & =180^{\circ}-\angle D O^{\prime} B
\end{array}
\]

Divided by 2 on both sides, we get
\[
\begin{align*}
& \frac{1}{2} \angle D E B & =90^{\circ}-\frac{1}{2} \angle D O^{\prime} B \\
\Rightarrow & \angle D E O^{\prime} & =90^{\circ}-\frac{1}{2} \angle D O^{\prime} B \tag{v}
\end{align*}
\]
[since, \(O^{\prime}\) ' is the angle bisector of \(\angle D E B\) i.e., \(\frac{1}{2} \angle D E B=\angle D E O^{\prime}\) ]
Similarly,
\[
\angle A E C=180^{\circ}-\angle A O C
\]

Divided by 2 on both sides, we get
\[
\begin{equation*}
\Rightarrow \quad \angle A E O=90^{\circ}-\frac{1}{2} \angle A O C \tag{vi}
\end{equation*}
\]
[since, \(O E\) is the angle bisector of \(\angle A E C\) i.e., \(\frac{1}{2} \angle A E C=\angle A E O\) ]
Now, \(\angle A E D+\angle D E O^{\prime}+\angle A E O=\angle A E D+\left(90^{\circ}-\frac{1}{2} \angle D O^{\prime} B\right)+\left(90^{\circ}-\frac{1}{2} \angle A O C\right)\)
\(=\angle A E D+180^{\circ}-\frac{1}{2}\left(\angle D O^{\prime} B+\angle A O C\right)\)
\(=\angle A E D+180^{\circ}-\frac{1}{2}(\angle A E D+\angle A E D)\) [from Eqs. (iii) and (iv)]
\(=\angle A E D+180^{\circ}-\frac{1}{2}(2 \times \angle A E D)\)
\(=\angle A E D+180^{\circ}-\angle A E D=180^{\circ}\)
\(\therefore \quad \angle A E O+\angle A E D+\angle D E O^{\prime}=180^{\circ}\)
So, OEO' is straight line.
Hence, \(O, E\) and \(O^{\prime}\) are collinear.
Hence proved.

\section*{Question 11:}

In the figure, 0 is the centre of a circle of radius \(5 \mathrm{~cm}, \mathrm{~T}\) is a point such that OT \(=13\) and \(O T\) intersects the circle at \(E\), if \(A B\) is the tangent to the circle at \(E\), find the length of \(A B\).


\section*{Solution:}

Given, \(\mathrm{OT}=13 \mathrm{~cm}\) and \(\mathrm{OP}=5 \mathrm{~cm}\)
Since, if we drew a line from the centre to the tangent of the circle. It is always perpendicular to the tangent i.e., \(O P \perp P T\).

In right angled \(\triangle O P T\),
\[
O T^{2}=O P^{2}+P T^{2}
\]
[by Pythagoras theorem, (hypotenuse) \()^{2}=(\text { base })^{2}+(\text { perpendicular) })^{2}\) ]
\[
\begin{array}{ll}
\Rightarrow & P T^{2}=(13)^{2}-(5)^{2}=169-25=144 \\
\Rightarrow & P T=12 \mathrm{~cm}
\end{array}
\]

Since, the length of pair of tangents from an external point \(T\) is equal.
\begin{tabular}{ll}
\(\therefore\) & \(Q T=12 \mathrm{~cm}\) \\
Now, & \(T A=P T-P A\) \\
\(\Rightarrow\) & \(T A=12-P A\) \\
and & \(T B=Q T-Q B\) \\
\(\Rightarrow\) & \(T B=12-Q B\)
\end{tabular}

Again, using the property, length of pair of tangents from an external point is equal.
\begin{tabular}{ll}
\(\therefore\) & \(P A=A E\) and \(Q B\) \\
\(\therefore\) & \(O T=13 \mathrm{~cm}\) \\
\(\therefore\) & \(E T=O T-O E\) \\
\(\Rightarrow\) & \(E T=13-5\) \\
\(\Rightarrow\) & \(E T=8 \mathrm{~cm}\)
\end{tabular}

Since, \(A B\) is a tangent and \(O E\) is the radius.
\[
\therefore \quad \angle A E T=180^{\circ}-\angle O E A \quad \text { [linear pair] }
\]
\[
(A T)^{2}=(A E)^{2}+(E T)^{2} \quad[\text { by Pythagoras theorem }]
\]

Join OQ.
Similarly
\[
\begin{aligned}
B E & =\frac{10}{3} \mathrm{~cm} \\
A B & =A E+E B \\
& =\frac{10}{3}+\frac{10}{3} \\
& =\frac{20}{3} \mathrm{~cm}
\end{aligned}
\]

Hence,

Hence, the required length \(A B\) is \(\frac{20}{3} \mathrm{~cm}\).

\section*{Question 12:}

The tangent at a point \(C\) of a circle and a diameter \(A B\) when extended intersect at P. If \(\angle P C A=110^{\circ}\), find \(\angle C B A\).

\section*{Solution:}

Here, \(A B\) is the diameter of the circle from point \(C\) and a tangent is drawn which meets at a point \(P\).
\[
\begin{aligned}
& \therefore \quad O E \perp A B \\
& \Rightarrow \quad \angle O E A=90^{\circ} \\
& \Rightarrow \quad \angle A E T=90^{\circ} \\
& \text { Now, in right angled } \triangle A E T \text {, } \\
& \Rightarrow \quad(P T-P A)^{2}=(A E)^{2}+(8)^{2} \\
& \Rightarrow \quad(12-P A)^{2}=(P A)^{2}+(8)^{2} \\
& \Rightarrow \quad 144+(P A)^{2}-24 \cdot P A=(P A)^{2}+64 \\
& \Rightarrow \quad 24 \cdot P A=80 \\
& \Rightarrow \quad P A=\frac{10}{3} \mathrm{~cm} \\
& \therefore \quad A E=\frac{10}{3} \mathrm{~cm}
\end{aligned}
\]


Join OC. Here, OC is radius.
Since, tangent at any point of a circle is perpendicular to the radius through point of contact circle.
\begin{tabular}{lr}
\(\therefore\) & \(O C \perp P C\) \\
Now, & \(\angle P C A=110^{\circ}\) \\
\(\Rightarrow\) & \(\angle P C O+\angle O C A=110^{\circ}\) \\
\(\Rightarrow\) & \(90^{\circ}+\angle O C A=110^{\circ}\) \\
\(\Rightarrow\) & \(\angle O C A=20^{\circ}\) \\
\(\therefore\) & \(O C=O A=\) Radius of circle \\
\(\Rightarrow\) & \(\angle O C A=\angle O A C=20^{\circ}\)
\end{tabular}

Since, \(P C\) is a tangent, so \(\quad \angle B C P=\angle C A B=20^{\circ}\) [angles in a alternate segment are equal]
\[
\text { In } \triangle P B C, \quad \begin{aligned}
\angle P+\angle C+\angle A & =180^{\circ} \\
\angle P & =180^{\circ}-(\angle C+\angle A) \\
& =180^{\circ}-\left(110^{\circ}+20^{\circ}\right) \\
& =180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
\]

In \(\triangle P B C\)
\[
\angle B P C+\angle P C B+\angle P B C=180^{\circ}
\]
[sum of all interior angles of any triangle is \(180^{\circ}\) ]
\(\Rightarrow \quad 50^{\circ}+20^{\circ}+\angle P B C=180^{\circ}\)
\(\Rightarrow \quad \angle P B C=180^{\circ}-70^{\circ}\)
\(\Rightarrow \quad \angle P B C=110^{\circ}\)
Since, \(A P B\) is a straight line.
\[
\begin{array}{lr}
\therefore & \angle P B C+\angle C B A=180^{\circ} \\
\Rightarrow & \angle C B A=180^{\circ}-110^{\circ}=70^{\circ}
\end{array}
\]

\section*{Question 13:}

If an isosceles \(\triangle A B C\) in which \(A B=A C=6 \mathrm{~cm}\), is inscribed in a circle of radius 9 cm , find the area of the triangle.

\section*{Solution:}

In a circle, \(\triangle A B C\) is inscribed.
Join OB, OC and OA.

Conside \(\triangle A B O\) and \(\triangle A C O\)
\[
\begin{aligned}
& A B=A C \\
& B O=C O
\end{aligned}
\]
[given]
[radii of same circle]

\(A O\) is common.
\(\therefore\)
\[
\begin{aligned}
\triangle A B O & \cong \triangle A C O \\
\angle 1 & =\angle 2
\end{aligned}
\]
[by SSS congruence rule]
[CPOT]
Now, in \(\triangle A B M\) and \(\triangle A C M\),
\[
\begin{aligned}
& A B=A C \\
& \angle 1=\angle 2
\end{aligned}
\]
[given] [proved above]
\(A M\) is common.
\(\therefore\)
\[
\triangle A M B \cong \triangle A M C
\]
[by SAS congruence rule]
\(\Rightarrow\)
Also,
\(\angle A M B+\angle A M C=180^{\circ}\)
[CPCT]
\(\Rightarrow\)
\[
\angle A M B=90^{\circ}
\]
[linear pair]
We know that a perpendicular from centre of circle bisects the chord.
So, \(O A\) is perpendicular bisector of \(B C\).
Let \(A M=x\), then \(O M=9-x\)
\[
A C^{2}=A M^{2}+M C^{2}
\]
\([\because O A=\) radius \(=9 \mathrm{~cm}]\)
In right angled \(\triangle A M C\)
\[
(\text { Hypotenuse })^{2}=(\text { Base })^{2}+(\text { Perpendicular })^{2}
\]
\(\Rightarrow\)
\[
\begin{equation*}
M C^{2}=6^{2}-x^{2} \tag{i}
\end{equation*}
\]
and in right \(\triangle O M C\),
\[
\begin{aligned}
& O C^{2}=O M^{2}+M C^{2} \\
& M C^{2}=9^{2}-(9-x)^{2}
\end{aligned}
\]
[by Pythagoras theorem]
\(\Rightarrow\)
From Eqs. (i) and (ii),
\(\Rightarrow\)
\(\Rightarrow\)
\[
6^{2}-x^{2}=9^{2}-(9-x)^{2}
\]
\[
36-x^{2}=81-\left(81+x^{2}-18 x\right)
\]
\(\Rightarrow\)
In right angled \(\triangle A B M\),
\[
36=18 x \Rightarrow x=2
\]
\[
A M=x=2
\]
\[
A B^{2}=B M^{2}+A M^{2} \quad[\text { by Pythagoras theorem }]
\]
\[
6^{2}=B M^{2}+2^{2}
\]
\(\Rightarrow\)
\[
B M^{2}=36-4=32
\]
\(\Rightarrow\)
\[
B M=4 \sqrt{2}
\]
\[
\begin{array}{rlrl}
\therefore & B C & =2 B M=8 \sqrt{2} \mathrm{~cm} \\
\therefore \quad \text { Area of } \triangle A B C & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& & =\frac{1}{2} \times B C \times A M \\
& & =\frac{1}{2} \times 8 \sqrt{2} \times 2=8 \sqrt{2} \mathrm{~cm}^{2}
\end{array}
\]

Hence, the required area of \(\triangle A B C\) is \(8 \sqrt{2} \mathrm{~cm}^{2}\).

\section*{Question 14:}
\(A\) is a point at a distance of 13 cm from the centre 0 of a circle of radius 5 cm . \(A P\) and \(A Q\) are the tangents to the circle at \(P\) and \(Q\). If a tangent \(B C\) is drawn at a point \(R\) lying on the minor arc \(P Q\) to intersect \(A P\) at \(B\) and \(A Q\) at \(C\), find the perimeter of the \(\triangle A B C\).

\section*{Solution:}

Given Two tangents are drawn from an external point \(A\) to the circle with centre 0 ,

\[
O A=13 \mathrm{~cm}
\]

Tangent \(B C\) is drawn at a point \(R\). radius of circle equals 5 cm .
To find perimeter of \(\triangle A B C\).
Proof \(\quad \angle O P A=90^{\circ}\)
[tangent at any point of a circle is perpendicular to the radius through the point of contact]
\(\therefore \quad O A^{2}=O P^{2}+P A^{2} \quad\) [by Pythagoras theorm]
\[
(13)^{2}=5^{2}+P A^{2}
\]
\(\Rightarrow \quad P A^{2}=144=12^{2}\)
\(\Rightarrow\)
\(P A=12 \mathrm{~cm}\)
Now,
perimeter of \(\triangle A B C=A B+B C+C A\)
\[
\begin{aligned}
& =(A B+B R)+(R C+C A) \\
& =A B+B P+C Q+C A
\end{aligned}
\]
\([\because B R=B P, R C=C Q\) tangents from internal point to a circle are equal \(]\)
\[
\begin{aligned}
& =A P+A Q \\
& =2 A P \\
& =2(12) \\
& =24 \mathrm{~cm}
\end{aligned}
\]
[ \(A P=A Q\) tangent from internal point to a circle are equal]
Hence, the perimeter of \(\triangle A B C=24 \mathrm{~cm}\).```

