Chapter 1: Real Numbers

2016

Short Answer Type Questions I [2 Marks]

Question 1.

Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in the exact number of times.

Solution:

Maximum capacity of a container, which can measure petrol in the exact number of times.
$=\mathrm{HCF}$ of (850 and 680)

2	850
5	425
5	85
	17

2	680
2	340
2	170
5	85
	17

$850=2 \times 5 \times 5 \times 17$
$680=2 \times 2 \times 2 \times 5 \times 17$
$\mathrm{HCF}=(850$ and 680$)=2 \times 5 \times 17=170$ litres.

Question 2.

Find the value of: $(-1)+(-1)^{2 n}+(-I)^{2 n+1}+(-I)^{4 n+1}$, where n is any positive odd integer. Solution:
To find $(-1)^{n}+(-1)^{2 n}+(-1)^{2 n+1}+(-1)^{4 n+2}$
as ' n ' is any positive odd integer
$\Rightarrow 2 n$ and $4 n+2$ are even positive integers.
Now

$$
\begin{aligned}
(-1)^{n} & =-1 \\
(-1)^{2 n} & =+1 \\
(-1)^{2 n+1} & =(-1)^{2 n}(-1)^{1}=1(-1)=-1 \\
(-1)^{4 n+2} & =(-1)^{4 n}(-1)^{2}=1(1)=1
\end{aligned}
$$

Put all values in the above expression (i)
We have $-1+1-1+1=0$

Question 3.

Find whether a decimal expansion of $13 / 64$ is a terminating or non-terminating decimal. If it terminates, find the number of decimal places its decimal expansion has.

Solution:

The given rational number is $\frac{13}{64}$
Now

$$
\frac{13}{64}=\frac{13}{2^{6}}=\frac{13}{2^{6} \times 5^{0}}
$$

$$
6 4 \longdiv { \begin{array} { l }
{ 1 3 . 0 0 0 0 0 0 } \\
{ \frac { 1 2 8 } { 2 0 0 } }
\end{array} }
$$

The denominator of the given rational number is of the form 192
$2^{n} \times 5^{m}$, i.e. $2^{6} \times 5^{0}$
\therefore The decimal expansion of $\frac{13}{64}$ is of the form of terminating.

$\frac{64}{160}$
$\frac{128}{320}$
The decimal expansion of $\frac{13}{64}$ terminates after 6 places of decimal.
320
0

Short Answer Type Question II [3 Marks]

Question 4.

Explain whether the number $3 \times 5 \times 13 \times 46+23$ is a prime number or a composite number.

Solution:

We have $3 \times 5 \times 13 \times 46+23=23 \times(3 \times 5 \times 13 \times 2)+23$

$$
=23 \times(3 \times 5 \times 13 \times 2)+23=23 \times 390+23
$$

It is clear that, the above number is a multiple of 23 . Therefore, the number is $(3 \times 5 \times 13$ $\times 46+23$) is not a prime number.

Long Answer Type Question [4 Marks]

Question 5.

Prove that the product of any three consecutive positive integers is divisible by 6 .
Solution: Let three consecutive numbers are $n, n+1, n+2$

Solution:

1st Case: If n is even
This means $\mathrm{n}+2$ is also even.
Hence n and $n+2$ are divisible by 2
Also, the product of n and $(n+2)$ is divisible by 2 .
$\therefore \mathrm{n}(\mathrm{n}+2)$ is divisible by 2 .
This conclude $n(n+2)(n+1)$ is divisible by $2 \ldots$ (i)
As, $\mathrm{n}, \mathrm{n}+1, \mathrm{n}+2$ are three consecutive numbers. $\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)$ is a multiple of 3 .
This shows $n(n+1)(n+2)$ is divisible by 3(ii)
By equating (i) and (ii) we can say
$\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)$ is divisible by 2 and 3 both.
Hence, $n(n+1)(n+2)$ is divisible by 6 .
2nd Case: When n is odd.
This show $(n+1)$ is even
Hence $(n+1)$ is divisible by 2. ...(iii)
This conclude $n(n+1)(n+2)$ is an even number and divisible by 2 .

Also, the product of three consecutive number is a multiple of 3.
$n(n+1)(n+2)$ is divisible by 3 (iv)
Equating (iii) and (iv) we can say
$n(n+1)(n+2)$ is divisible by both 2 and 3 Hence, $n(n+1)(n+2)$ is divisible by 6 .

2015

Short Answer Type Questions I [2 Marks]

Question 6.

Apply Euclid's division algorithm to find HCF of numbers 4052 and 420.
Solution:

Given numbers are 4052 and 420.
On applying Euclid's division algorithm, we have
$4 2 0 \longdiv { 4 0 5 2 (9 }$

$$
\begin{aligned}
4052 & =420 \times 9+272 \\
420 & =272 \times 1+148 \\
272 & =148 \times 1+124 \\
148 & =124 \times 1+24 \\
124 & =24 \times 5+4 \\
24 & =4 \times 6+0
\end{aligned}
$$

So, HCF of 4052 and $420=4$.

$$
2 7 2 \longdiv { 4 2 0 (1 }
$$

$$
\frac{272}{148}
$$

$$
\frac { 2 7 2 } { 1 4 8 } \longdiv { 2 7 2 } (1
$$

$$
\frac { 1 4 8 } { 1 2 4 } \longdiv { 1 4 8 (1 }
$$

$$
124
$$

$$
\frac { 1 2 4 } { 2 4 } \longdiv { 1 2 4 (5 }
$$

Question 7.

Show that $(\sqrt{3}+\sqrt{ } 5)^{2}$ is an irrational number.

Solution:

We have to prove that $(\sqrt{3}+\sqrt{5})^{2}$ is an irrational number, i.e. to prove $(8+2 \sqrt{15})$ is an irrational number.
Let us suppose $8+2 \sqrt{15}$ is a rational number.
\therefore There exists coprime integers (say) a and $b, b \neq 0$ such that

$$
\begin{aligned}
8+2 \sqrt{15} & =\frac{a}{b} \\
\Rightarrow \quad 2 \sqrt{15} & =\frac{a}{b}-8 \Rightarrow \quad \sqrt{15}=\frac{a-8 b}{2 b}
\end{aligned}
$$

$\frac{a-8 b}{2 b}$ being rational number so, $\sqrt{15}$ becomes rational, which is contradiction with the fact that $\sqrt{15}$ is irrational. We led to contradiction due to wrong supposition. Hence, $(\sqrt{3}+\sqrt{5})^{2}$ is irrational.

Question 8.

Three bells toll at intervals of 12 minutes, 15 minutes and 18 minutes respectively. If they start tolling together, after what time will they next toll together?

Solution:

LCM of $12,15,18=2^{2} \times 3^{2} \times 5$
$=4 \times 9 \times 5=180$
So, next time the bells will ring together after 180 minutes.

2	12,	15,	18
2	6,	15,	9
3	3,	15,	9
3	1,	5,	3
5	1,	5,	1
	1,	1,	1

2014

Short Answer Type Questions I [2 Marks]

Question 9.

If HCF of 144 and 180 is expressed in form $13 m-3$, find the value of m.
Solution:
On applying Euclid's division algorithm,
$180=144 \times 1+36$
$144=36 \times 4+0$
At the last stage, the divisor is 36 .
\therefore HCF of 144 and 180 is 36 .
$\because 36=13 \times 3-3$
So, $m=3$
On applying Euclid's division algorithm,
$180=144 \times 1+36$
$144=36 \times 4+0$
At the last stage, the divisor is 36 .

$$
1 4 4 \longdiv { 1 8 0 (1 }
$$

144
$36) 144(4$
\therefore HCF of 144 and 180 is 36 .
$\because 36=13 \times 3-3$

So, $m=3$

Question 10.

Show that 9^{n} can not end with digit 0 for any natural number n.
Solution:
Since prime factorisation of 9^{n} is given by $9^{n}=(3 \times 3)^{n}=3271$.
Prime factorisation of 9 " contains only prime number 3.
9 may end with the digit 0 for some natural number V if 5 must be in its prime factorisation, which is not present.
So, there is no natural number N for which 9^{n} ends with the digit zero.

Question 11.

Determine the values otp and q so that the prime factorisation of2520 is expressible as $23 \mathrm{Xy} \mathrm{Xq} \times 7$.

Solution:

Prime factorisation of 2520 is given by
$2520=23 \times 32 \times 5 \times 7$
Given that $2520=23 \times 3 p \times q \times 7$
On comparing both factorisation we get $p=2$ and $q=5$.

Question 12.

Show that $2 \sqrt{ } 2$ is an irrational number.

Solution:

Let us assume that $2 \sqrt{2}$ is rational.
\therefore There exists coprime integers a and $b(b \neq 0)$ such that

$$
2 \sqrt{2}=\frac{a}{b} \Rightarrow \sqrt{2}=\frac{a}{2 b}
$$

Since a and b are integers, we get $\frac{a}{2 b}$ is rational and so $\sqrt{2}$ is rational.
But this contradicts the fact that $\sqrt{2}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $2 \sqrt{2}$ is rational.
Hence, we conclude that $2 \sqrt{2}$ is irrational.

Question 13.

Show that any positive odd integer is of form $4 m+1$ or $4 m+3$, where m is some integer.

Solution:

Let ' a ' be any positive integer and $b=4$, then by Euclid's division algorithm, we have $a=4 q+r, 0 \leq r<4$ where $q \geq 0$ and $\mathrm{r}=0,1,2,3$.
Now ' a ' may be of the form of $4 q, 4 q+1,4 q+2,4 q+3$.

When	When	When	When
$a=4 q$	$a=4 q+1$	$a=4 q+2$	$a=4 q+3$
$=2.2 q$	$=2 .(2 q)+1$	$=2 .(2 q)+2$	$=2.2 q+2+$
$=2 \mathrm{~m}$	$=2 m+1$	$=2(2 q+1)$	$=2(2 q+1)+1$
where $m=2 q$	$=$ odd number	$=2 \mathrm{~m}$	$=2 m+1$
$=$ even number		even number	odd number

Clearly, it is seen that any positive odd integer is of the form $4 m+1$ or $4 m+3$ for some integer m.

Short Answer Type Questions II [3 Marks]

Question 14.

By using, Euclid's algorithm, find the largest number which divides 650 and 1170.

Solution:

Given numbers are 650 and 1170.
On applying Euclid's division algorithm,
we get $1170=650 \times 1+520$
$650=520 \times 1+130$
$520=130 \times 4+0$
\because At the last stage, the divisor is 130 .
\therefore The HCF of 650 and 1170 is 130 .
$6 5 0 \longdiv { 1 1 7 0 } 1$
650
520)650(1

$$
\begin{aligned}
& 520 \\
& \hline 130) 520(4 \\
& \frac{520}{0}
\end{aligned}
$$

Question 15.

Show that reciprocal of $3+2 \sqrt{ } 2$ is an irrational number

Solution:

We have to prove that $\frac{1}{3+2 \sqrt{2}}=3-2 \sqrt{2}$ is an irrational number.
Let us assume that $3-2 \sqrt{2}$ is rational.
\therefore There exists coprime integers a and $b(b \neq 0)$ such that

$$
\begin{array}{rlrl}
& & 3-2 \sqrt{2} & =\frac{a}{b} \Rightarrow 2 \sqrt{2}=3-\frac{a}{b} \\
\Rightarrow & 2 \sqrt{2} & =\frac{3 b-a}{b} \\
\Rightarrow & \sqrt{2} & =\frac{3 b-a}{2 b}=\frac{3}{2}-\frac{a}{2 b}
\end{array}
$$

Since a and b are integers, we get $\frac{3}{2}-\frac{a}{2 b}$ is rational and so $\sqrt{2}$ is rational.
But this contradicts the fact that $\sqrt{2}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $3-2 \sqrt{2}$ is rational.
Hence, we conclude that $3-2 \sqrt{2}$ is irrational.

Long Answer Type Question [4 Marks]

Question 16.

Find HCF of 378,180 and 420 by prime factorisation method. Is HCF x LCM of three numbers equal to the product of the three numbers?

Solution:

$378=2 \times 33 \times 7$
$180=22 \times 32 \times 5$
$420=22 \times 3 \times 5 \times 7$
$\therefore \operatorname{HCF}(378,180,420)=2 \times 3=6$.
No. HCF $(p, q, r) \times \operatorname{LCM}(p, q, r) \neq p \times q \times r$. where p, q, r are positive integers.

2013

Short Answer Type Questions I [2 Marks]

Question 17.

Find the HCF of 255 and 867 by Euclid's division algorithm

Solution:

Given numbers are 255 and 867.
On applying Euclid's division algorithm, we have
$867=255 \times 3+102$
$255=102 \times 2+51$
$102=51 \times 2+0$
\because At the last stage, the divisor is 51
\therefore The HCF of 255 and 867 is 51 .

\[

\]

Question 18.

Find the HCF $(865,255)$ using Euclid's division Iemma.

Solution:

Given numbers are 255 and 865.
On applying Euclid's division algorithm, we have
$865=255 \times 3+100$
$255=100 \times 2+55$
$100=55 \times 1+45$
$55=45 \times 1+10$
$45=10 \times 4+5$
$10=5 \times 2+0$
\because At the last stage, the divisor is 5
\therefore The HCF of 255 and 865 is 5 .
$2 5 5 \longdiv { 8 6 5 } 3$

$$
\begin{aligned}
& \begin{array}{l}
765 \\
100) 255(2
\end{array} \text { [Delhi] } \\
& 200 \\
& \text { 55) } 100(1 \\
& 55 \\
& \text { 45) } 55 \text { (1 } \\
& 45 \\
& \text { 10) } 45 \text { (4 } \\
& 40 \\
& \text { 5)10(2 } \\
& \begin{array}{c}
10 \\
\hline 0 \\
\hline
\end{array}
\end{aligned}
$$

Short Answer Type Questions II [3 Marks]

Question 19.

Find HCF of 65 and 117 and find a pair of integral values of m and n such that HCF $=65 m+117 n$.

Solution:

Given numbers are 65 and 117.
On applying Euclid's division algorithm, we get
$117=65 \times 1+52$
$65=52 \times 1+13$
$52=13 \times 4+0$
\because At the last stage, the divisor is 13 .
\therefore The HCF of 65 and 117 is 13.
The required pair of integral values of m and n is
$(2,-1)$ which satisfies the given relation $\mathrm{HCF}=65 m+117 n$.

$6 5 \longdiv { 1 1 7 } 1$
 65
 52) 65(1

$$
\begin{aligned}
& 52 \\
& \hline 13) 52(4 \\
& \frac{52}{0} \\
& \hline
\end{aligned}
$$

Question 20.

By using Euclid's algorithm, find the largest number which divides 650 and 1170

Solution:

Since prime factorisation of 9^{n} is given by $9^{n}=(3 \times 3)^{n}=3271$.
Prime factorisation of 9 " contains only prime number 3.
9 may end with the digit 0 for some natural number V if 5 must be in its prime factorisation, which is not present.
So, there is no natural number N for which 9^{n} ends with the digit zero.

2012

Short Answer Type Question I [2 Marks]

Question 21.

If $\frac{241}{4000}=\frac{241}{2^{m} \cdot 5^{n}}$ find the values of m and n where m and n are non-negative integers.
Hence write its decimal expansion without actual division.

Solution:

$\frac{241}{4000}$	$=\frac{241}{2^{m} \cdot 5^{n}} \Rightarrow 4000=2^{m} \cdot 5^{n}$
$2^{5} \times 5^{3}$	$=2^{m} \cdot 5^{n} \quad \Rightarrow m=5, n=3$
$\frac{241}{4 \times 1000}$	$=\frac{1}{4} \times 0.241=0.06025$ (Terminating).

Short Answer Type Questions II [3 Marks]

Question 22.

Express the number 0.3178 in the form of rational number a / b.

Solution:

Let $x=0.3 \overline{178}$

$$
\begin{array}{lc}
\Rightarrow & 10 x=3 . \overline{178} \tag{i}\\
\Rightarrow & 10000 x=3178 . \overline{178}
\end{array}
$$

Subtracting (i) from (ii)

$$
\Rightarrow \quad \begin{aligned}
9990 x & =3175 \\
x & =\frac{635}{1998}
\end{aligned}
$$

Question 23.

Using Euclid's division algorithm, find whether the pair of numbers 847,2160 are or not.

Solution:

$$
\begin{aligned}
2160 & =847 \times 2+466 \\
847 & =466 \times 1+381 \\
466 & =381 \times 1+85 \\
381 & =85 \times 4+41 \\
85 & =41 \times 2+3 \\
41 & =3 \times 13+2 \\
3 & =2 \times 1+1 \\
\because \quad 1 & =1+0 \\
\because \quad H C F & =1
\end{aligned}
$$

$\therefore \quad$ Numbers 847 and 2160 are coprimes.

Question 24.

The LCM of the two numbers is 14 times their HCF. The sum of LCM and HCF is 600 . If one number is 280 , then find the other number.

Solution:

Let $\mathrm{HCF}=x$
\therefore

$$
\text { LCM }=14 x
$$

A.T.Q.

$$
x+14 x=600 \Rightarrow x=40
$$

Now, $280 \times$ other number $=\mathrm{HCF} \times \mathrm{LCM}=40 \times 560$
Other number $=80$

2011

Short Answer Type Questions I [2 Marks]

Question 25.

Prove that $15+17 \sqrt{ } 3$ is an irrational number.
Solution:
Let $15+17 \sqrt{3}$ is a rational number.
$\therefore 15+17 \sqrt{3}=\frac{a}{b}$, where a and b are coprime, $b \neq 0$

$$
\begin{aligned}
& \Rightarrow a \text { and } b \text { are integers } \\
& \because a \sqrt{3}=\frac{a}{b}-15 \Rightarrow \sqrt{3}=\frac{a-15 b}{17 b}
\end{aligned}
$$

So, $\frac{a-15 b}{17 b}$ is a rational number and so, $\sqrt{3}$ is rational.
But this contradicts the fact that $\sqrt{3}$ is irrational. This contradiction has arisen because of our incorrect assumption that $15+17 \sqrt{3}$ is rational.
Hence, $15+17 \sqrt{3}$ is irrational.

Question 26.

Find the LCM and HCF of 120 and 144 by using Fundamethe mental Theorem of

Arithmetic.

Solution:

$120=23 \times 3 \times 5$
$144=24 \times 32$
$\therefore \mathrm{HCF}=23 \times 3=24$
LCM $=24 \times 5 \times 32=720$

Short Answer Type Questions II [3 Marks]

Question 27.

An army contingent of 1000 members is to march behind an army band of 56
members in a parade. The two groups are to march in the same number of columns.
What is the maximum number of columns in which they can march?

Solution:

$1000=2 \times 2 \times 2 \times 5 \times 5 \times 5$
$56=2 \times 2 \times 2 \times 7$
HCF of 1000 and $56=8$
A maximum number of columns $=8$.

Question 28.

Show that any positive odd integer is of the form $4 q+1$ or $4 q+3$ where q is a positive integer.

Solution:

Let N be any positive integer and $b=4$
Then by Euclid's division lemma, $N=4 q+r, 0 \leq r<4 ; q>0$
$\therefore N=4 q$ or $4 q+1$ or $4 q+2$ or $4 q+3$
(i) when $N=4 q=2(2 q)=$ even
(ii) when $N=4 q+1=2(2 q)+1=$ even $+1=$ odd
(iii) when $N=4 q+2=2(2 q+1)=$ even
(iv) when $N=4 q+3=4 q+2+1=2(2 q+1)+1=$ Even $+1=$ odd
\therefore When $N=4 q+1$ or $4 q+3$, then it is odd
\Rightarrow Any positive odd integer is of the form $4 q+1$ or $4 q+3$.

Question 29.

Prove that $2 \sqrt{ } 3 / 5$ is irrational

Solution:

Let $\frac{2 \sqrt{3}}{5}$ is rational.
\therefore There exists coprime integers a and $b(b \neq 0)$
Such that $\frac{2 \sqrt{3}}{5}=\frac{a}{b} \Rightarrow \sqrt{3}=\frac{5 a}{2 b}$
$\because a$ and b are integers we get $\frac{5 a}{2 b}$ is rational and so $\sqrt{3}$ is rational.
But this contradicts the fact that $\sqrt{3}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $\frac{2 \sqrt{3}}{5}$ is rational. So, we conclude that $\frac{2 \sqrt{3}}{5}$ is irrational.

2010

Very Short Answer Type Questions [1 Mark]

Question 30.

Has the rational number a terminating or a non-terminating decimal representation Solution:
$\frac{441}{2^{2} \cdot 5^{7} \cdot 7^{2}}$ is non-terminating decimal.
Since $q=2^{2} \times 5^{7} \times 7^{2}$ is not of the form $2^{m} \times 5^{n}$.

Question 31.

Write whether $\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}$ on simplification gives a rational or an irrational number.
Solution:
$\frac{2 \sqrt{45}+3 \sqrt{20}}{2 \sqrt{5}}=\frac{2 \sqrt{9 \times 5}+3 \sqrt{4 \times 5}}{2 \sqrt{5}}=\frac{6 \sqrt{5}+6 \sqrt{5}}{2 \sqrt{5}}=\frac{12 \sqrt{5}}{2 \sqrt{5}}$
$=6$ which is rational number.

Question 32.

The HCF of 45 and 105 is 15 . Write their LCM.
Solution:
$\operatorname{HCF}(45,105)=15$
$\therefore \quad \mathrm{LCM}=\frac{45 \times 105}{15}=315$

Question 33.

Prove that $2-3 \sqrt{ } 5$ is an irrational number.
Solution:
Let us assume, to contrary that $2-3 \sqrt{5}$ is rational
Let $2-3 \sqrt{5}=\frac{a}{b}$ where a and b are coprime numbers, $b \neq 0$

$$
\begin{aligned}
& 2-\frac{a}{b}=3 \sqrt{5} \\
& \frac{2 b-a}{3 b}=\sqrt{5}
\end{aligned}
$$

Since a and b are integers, we get $\frac{2 b-a}{3 b}$ is rational, and so $\sqrt{5}$ is rational.
But this contradicts the fact that $\sqrt{5}$ is irrational. This contradiction has arisen because of our incorrect assumption that $2-3 \sqrt{5}$ is rational.
So, we conclude that $2-3 \sqrt{5}$ is irrational.

Question 34.

Prove that $2 \sqrt{ } 3-1$ is an irrational number.

Solution:

Let $2 \sqrt{ } 3-1$ is an irrational number.
$\therefore 2 \sqrt{3}-1=\frac{a}{b}$, where a and b are coprimes and $b \neq 0$

$$
\begin{array}{ll}
\Rightarrow & b \\
\Rightarrow & \sqrt{3}=\frac{a}{b}+1 \Rightarrow 2 \sqrt{3}=\frac{a+b}{b} \tag{i}\\
\Rightarrow & \sqrt{3}=\frac{a+b}{2 b}
\end{array}
$$

From (i), we notice
LHS is an irrational number and RHS is rational number, which is not possible. Hence, our supposition is wrong. Hence, $2 \sqrt{3}-1$ is an irrational number.

Question 35.

Prove that $\sqrt{ } 2$ is irrational.

Solution:

Let us assume that $\sqrt{2}$ is rational.
\therefore There exists coprime integers a and $b(b \neq 0)$
Such that

$$
\sqrt{2}=\frac{a}{b} \Rightarrow \sqrt{2} b=a
$$

Squaring on both sides, we get

$$
\begin{equation*}
2 b^{2}=a^{2} \tag{i}
\end{equation*}
$$

$\Rightarrow 2$ divides $a^{2} \Rightarrow 2$ divides a
So, we can write

$$
\begin{equation*}
a=2 c \text { for some integer } c \tag{ii}
\end{equation*}
$$

From (i) and (ii),

$$
2 b^{2}=4 c^{2} \Rightarrow b^{2}=2 c^{2}
$$

$\Rightarrow 2$ divides $b^{2} \Rightarrow 2$ divides b
$\therefore \quad 2$ is a common factor of a and b.
But this contradicts the fact that a and b are coprimes.
This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.
Hence, $\sqrt{2}$ is irrational.

Question 36.

Prove that $7-2 \sqrt{ } 3$ is an irrational number.

Solution:

Let, $7-2 \sqrt{3}$ be a rational number.
Let $\quad 7-2 \sqrt{3}=\frac{a}{b}$, where a and b are coprimes and $b \neq 0$
$\Rightarrow \quad 7-\frac{a}{b}=2 \sqrt{3} \Rightarrow \frac{7 b-a}{b}=2 \sqrt{3} \Rightarrow \frac{7 b-a}{2 b}=\sqrt{3}$
We notice that LHS is a rational number, whereas RHS is an irrational number, which is a contradiction. Hence, our supposition is wrong.
Hence, $7-2 \sqrt{3}$ is an irrational number.

Question 37.
Show that $5+3 \sqrt{ } 2$ is an irrational number.
Solution:

Let us assume $5+3 \sqrt{ } 2$ is an irrational number.
There coprime integers a and $b(b \neq 0)$

Such that

$$
\begin{aligned}
5+3 \sqrt{2} & =\frac{a}{b} \\
\Rightarrow \quad 3 \sqrt{2} & =\frac{a}{b}-5 \Rightarrow \sqrt{2}=\frac{a-5 b}{3 b}
\end{aligned}
$$

$\because a$ and b are integers we get $\frac{a-5 b}{3 b}$ is rational number and so $\sqrt{2}$ is rational.
But this contradicts the fact that $\sqrt{2}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $5+3 \sqrt{2}$ is rational. So, we conclude that $5+3 \sqrt{2}$ is irrational:

2009

Very Short Answer Type Questions [1 Mark]

Question 38.

The decimal $\frac{43}{2^{4} \cdot 5^{3}}$, will terminate after how many places of decimals.

Solution:

The decimal expansion of the rational number $\frac{43}{2^{4} \cdot 5^{3}}$, will terminate after 4 places of
decimal.
$\frac{43}{2^{4} \cdot 5^{3}}=\frac{43}{16 \times 125}=\frac{43}{2000}=0.0215$

Question 39

Find the [HCF X LCM] for the numbers 100 and 190.

Solution:

HCF \times LCM $=$ one number x another number
$=100 \times 190=19000$

Question 40.

Find the [HCF and LCM] for the numbers 105 and 120. [All India]
Solution:
$105=5 \times 7 \times 3$
$120=2 \times 2 \times 2 \times 3 \times 5$
$\mathrm{HCF}=3 \mathrm{X} 5=15$
LCM $=5 \times 7 \times 3 \times 2 \times 2 \times 2=840$

Question 41.

Write whether the rational number $\frac{51}{1500}$ will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

Solution: $\frac{51}{1500}=\frac{17}{500}$
Prime factorization of $500=(2)(2)(5)(5)(5)=2^{2} \times 5^{3}$
Its denominator has prime factors of form $2^{m} \times 5^{n}$
So, it has a terminating decimal expansion.

Question 42.

The HCF and LCM of two numbers are 9 and 360 respectively. If one number is 45 , write the other number.

Solution:

Let another number $=x$

$$
\begin{aligned}
\operatorname{HCF}(45, x) & =9 \\
\operatorname{LCM}(45, x) & =360 \\
\operatorname{HCF} \times \mathrm{LCM} & =45 \times x \\
9 \times 360 & =45 \times x \\
x & =\frac{360}{5}=72
\end{aligned}
$$

Short Answer Type Questions II [3 Marks]

Question 43.

Show that $5-2 \sqrt{3}$ is an irrational number.

Solution:

Let us assume that $5-2 \sqrt{3}$ is rational number.
\therefore There exists coprime integers a and $b(b \neq 0)$ such that
$5-2 \sqrt{3}=\frac{a}{b}$
$\Rightarrow 2 \sqrt{3}=5-\frac{a}{b} \Rightarrow \sqrt{3}=\frac{5 b-a}{2 b}$
$\because a$ and b are integers, we get $\frac{5 b-a}{2 b}$ is rational and so $\sqrt{3}$ is rational.
But this contradicts the fact that $\sqrt{3}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $5-2 \sqrt{3}$ is rational.
So, we conclude that $5-2 \sqrt{3}$ is irrational.

Question 44.
Show that $3+5 \sqrt{ } 2$ is an irrational number.
Solution:

Let us assume that $3+5 \sqrt{2}$ is rational number.
\therefore There exists coprime integers a and $b(b \neq 0)$
Such that $3+5 \sqrt{2}=\frac{a}{b}$
$\Rightarrow 5 \sqrt{2}=\frac{a}{b}-3 \Rightarrow \sqrt{2}=\frac{a-3 b}{5 b}$
$\because a$ and b are integers we get $\frac{a-3 b}{5 b}$ is rational number and so $\sqrt{2}$ is rational.
But this contradicts the fact that $\sqrt{2}$ is irrational.
This contradiction has arisen because of our incorrect assumption that $3+5 \sqrt{2}$ is rational.
So, we conclude that $3+5 \sqrt{2}$ is irrational.
Question 45.
Show that the square of any positive odd integer is of form $8 m+1$, for some integer m.

Solution:
Let $a=2 q+1$ be any positive odd integer.
Now,

$$
\begin{aligned}
a^{2} & =(2 q+1)^{2} \\
& =4 q^{2}+4 q+1 \\
& =4 q(q+1)+1 \\
& =4(2 m)+1 \\
& =8 m+1
\end{aligned}
$$

$$
=4(2 m)+1 \quad[\because q \text { and }(q+1) \text { are consecutive numbers, so }
$$

$$
\text { one of them must be even and of the form } 2 \mathrm{~m} \text {.] }
$$

\therefore Square of any positive odd integer is of the form $8 m+1$, for some integer m.

Question 46.

Prove that $7+3 \sqrt{ } 2$ is not a rational number.
Solution:
Let $7+3 \sqrt{2}$ be rational
$\Rightarrow \quad 7+3 \sqrt{2}=\frac{p}{q}$, where $q \neq 0$ and p and q are coprimes
$\Rightarrow \quad 3 \sqrt{2}=\frac{p}{q}-7$
$\Rightarrow \quad \sqrt{2}=\frac{p-7 q}{3 q}$
Here, on RHS $\frac{p-7 q}{3 q}$ is rational, whereas $\sqrt{2}$ is irrational.
Therefore, our assumption is wrong.
Hence, $7+3 \sqrt{2}$ is irrational.

