Chapter 15: Probability

Q.1. Compute the probability of the occurrence of an event if the probability the event not occurring is $\mathbf{0 . 5 6}$.

Solution:
Given,
$P($ not $E)=0.56$
We know that,
$P(E)+P($ not $E)=1$
So, $P(E)=1-P($ not $E)$
$P(E)=1-0.56$
Or, $P(E)=0.44$
Q.2. In a factory of 364 workers, 91 are married. Find the probability of selecting a worker who is not married.

Solution:
Given,
Total workers (i.e. Sample space) $=n(S)=364$
Total married workers = 91
Now, total workers who are not married $=n(E)=364-91=273$
Method 1: So, $P($ not married $)=n(E) / n(S)=273 / 364=0.75$
Method 2: $\mathrm{P}($ married $)+\mathrm{P}($ not married $)=1$
Here, $P($ married $)=91 / 364=0.25$
So, $0.25+\mathrm{P}($ not married $)=1$
$P($ not married $)=1-0.25=0.75$
Q. 3. From a deck of cards, 10 cards are picked at random and shuffled. The cards are as follows:

6, 5, 3, 9, 7, 6, 4, 2, 8, 2

Find the probability of picking a card having a value of more than 5 and find the probability of picking a card with an even number on it.

Solution:
Total number of cards $=10$
Total cards having value more than $5=5$
i.e. $\{6,9,7,6,8\}$

Total cards having an even number $=6$
i.e. $\{6,6,4,2,8,2\}$

So, the probability of picking a card having a value of more than $5=5 / 10=0.5$
And, the probability of picking a card with an even number on it $=6 / 10=0.6$
Q.4. From a bag of red and blue balls, the probability of picking a red ball is $x / 2$. Find " x " if the probability of picking a blue ball is $2 / 3$.
Solution:
Here, there are only red and blue balls.
$P($ picking a red ball $)+P($ picking a blue ball $)=1$
$x / 2+2 / 3=1$
$\Rightarrow 3 x+4=6$
$\Rightarrow 3 x=2$
Or, $x=2 / 3$
Q.5. Two coins are tossed simultaneously 360 times. The number of times ' 2 Tails' appeared was three times 'No Tail' appeared and the number of times ' 1 tail' appeared is double the number of times 'No Tail' appeared. What is the probability of getting 'Two tails'.

Solution:
Given,
Total number of outcomes $=$ Sample space $=360$
Now, assume that the number of times 'No Tail' appeared to be " x "
So, the number of times ' 2 Tails' appeared $=3 x$ (from the question)
Also, the number of times ' 1 Tail' appeared $=2 x$ (from the question)
As the total outcomes $=360$,
$x+2 x+3 x=360$
$\Rightarrow 6 x=360$
Or, $x=60$
$\therefore \mathrm{P}($ getting two tails $)=(3 \times 60) / 360=1 / 2$
Q.6: 1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in a family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having
(i) $\mathbf{2}$ girls
(ii) 1 girl
(iii) No girl

Also, check whether the sum of these probabilities is 1.
Solution:

Total numbers of families $=1500$
(i) Numbers of families having 2 girls $=475$

Probability = Numbers of families having 2 girls/Total numbers of families
$P=475 / 1500$
$P=19 / 60$
(ii) Numbers of families having 1 girls $=814$

Probability $=$ Numbers of families having $1 /$ Total numbers of families
$P=814 / 1500$
$P=407 / 750$
(iii)Numbers of families having no girls $=211$

Probability = Numbers of families having 0 girls/Total numbers of families = 211/1500
Sum of the probability $=(19 / 60)+(407 / 750)+(211 / 1500)$
$=(475+814+211) 1500=1500 / 1500=1$
Yes, the sum of these probabilities is 1.
Q.7: A die is thrown 1000 times with the frequencies for the outcomes 1, 2, 3, 4, 5 and 6 as given in the following table :

Outcome	1	2	3	4	5	6
Frequency	179	150	157	149	175	190

Find the probability of getting each outcome.
Solution: Let E_{i} denote the event of getting the outcome I , where $\mathrm{i}=1,2,3,4,5,6$.
Then
Probability of the outcome $1=P\left(E_{1}\right)$
= Frequency of $1 /$ Total number of times the die is thrown
= 179/1000
$=0.179$
Similarly,
$P\left(E_{2}\right)=150 / 1000=0.15$
$P\left(E_{3}\right)=157 / 1000=0.157$
$P\left(E_{4}\right)=149 / 1000=0.149$
$P\left(E_{5}\right)=175 / 1000=0.175$
and $P\left(E_{6}\right)=190 / 1000=0.19$
You can check: $P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)+P\left(E_{4}\right)+P\left(E_{5}\right)+P\left(E_{6}\right)=1$
Q.8: An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income (in ₹)	Vehicles per family			
	0	1	2	Above 2
Less than 7000	10	160	25	0
7000-10000	0	305	27	2
10000-13000	1	535	29	1
13000-16000	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen. Find the probability that the family has chosen is

1. earning ₹ $10000 \mathbf{- 1 3 0 0 0}$ per month and owning exactly $\mathbf{2}$ vehicles.
2. earning ₹ 16000 or more per month and owning exactly 1 vehicle.
3. earning less than ₹ 7000 per month and does not own any vehicle.
4. earning ₹ $13000 \mathbf{- 1 6 0 0 0}$ per month and owning more than $\mathbf{2}$ vehicles.

5 . owning not more than 1 vehicle.
Solution:
Total number of families $=2400$
(i) Numbers of families earning ₹10000-13000 per month and owning exactly 2 vehicles $=29$

Therefore, the probability that the family earning between ₹10000-13000 per month and owning exactly 2 vehicle $=29 / 2400$
(ii) Number of families earning ₹16000 or more per month and owning exactly 1 vehicle $=579$

Therefore, the probability that the family earning between ₹16000 or more per month and owning exactly 1 vehicle $=579 / 2400$
(iii) Number of families earning less than ₹ 7000 per month and does not own any vehicle $=10$

Therefore, the probability that the family earning less than ₹7000 per month and does not own any vehicle $=10 / 2400=1 / 240$
(iv) Number of families earning ₹13000-16000 per month and owning more than 2 vehicles $=25$

Therefore, the probability that the family earning between ₹13000-16000 per month and owning more than 2 vehicles $=25 / 2400=1 / 96$
(v) Number of families owning not more than 1 vehicle $=$
$10+160+0+305+1+535+2+469+1+579=2062$
Therefore, the probability that the family owns not more than 1 vehicle $=2062 / 2400$ $=1031 / 1200$
Q.9: Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg):
4.97
5.05
5.08
5.03
5.00
$\begin{array}{lll}5.06 & 5.08 & 4.98\end{array}$
5.04
5.07
5.0
0

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Solution: Total number of bags present $=11$
Number of bags containing more than 5 kg of flour $=7$
Therefore, the probability that any of the bags chosen at random contains more than 5 kg of flour $=7 / 11$
Q.10: The distance (in km) of 40 engineers from their residence to their place of work were found as follows: 5310202511137123119101217181132 171627978351215183121429615157612.

What is the empirical probability that an engineer lives:
(i) less than 7 km from her place of work?
(ii) more than or equal to $\mathbf{7 k m}$ from her place of work?
(iii) within km from her place of work?

Solution:
The distance (in km) of 40 engineers from their residence to their place of work was found as follows:
531020251113712311910121718113217162797835121518312 1429615157612

Total numbers of engineers $=40$
(i) Number of engineers living less than 7 km from their place of work $=9$

The probability that an engineer lives less than 7 km from her place of work $=9 / 40$
(ii) Number of engineers living more than or equal to 7 km from their place of work $=40-9=31$

The probability that an engineer lives more than or equal to 7 km from her place of work
= 31/40
(iii) Number of engineers living within km from their place of work $=0$

The probability that an engineer lives within km from her place of work $=0 / 40=0$

Q.11: Refer to the table below:

Marks	Number of students
$0-20$	7
$20-30$	10
$30-40$	10
$40-50$	20
$50-60$	20
$60-70$	15
$70-$ above	8
Total	90

(i) Find the probability that a student obtained less than $\mathbf{2 0 \%}$ in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.

Solution: Total number of students $=90$
(i) Number of students who obtained less than 20% in the mathematics test $=7$

The probability that a student obtained less than 20% in the mathematics test $=7 / 90$
(ii) Number of students who obtained marks 60 or above $=15+8=23$

The probability that a student obtained marks 60 or above $=23 / 90$

