Chapter 10 - Circles

Exercise-10.1

Question 1: 1. How many tangents can a circle have?
Answer: There can be infinite tangents to a circle.

Question 2: Fill in the blanks:
(i) A tangent to a circle intersects it in \qquad point(s).
(ii) A line intersecting a circle in two points is called a
(iii) A circle can have \qquad parallel tangents at the most.
(iv) The common point of a tangent to a circle and the circle is called \qquad
Answer: (i) one
(ii) secant
(iii) two
(iv) point of contact

Question 3: A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $O Q=12 \mathrm{~cm}$. Length $P Q$ is
(a) 12 cm
(b) 13 cm
(c) 8.5 cm
(d) $\sqrt{119} \mathbf{c}$

Answer:

From the figure, we can see that, $\mathrm{OP} \perp \mathrm{PQ}$
Using Pythagoras theorem in triangle $\triangle \mathrm{OPQ}$, we get,
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2}$
or, $(12)^{2}=5^{2}+\mathrm{PQ}^{2}$
or, $\mathrm{PQ}^{2}=144-25$
or, $\mathrm{PQ}^{2}=119$
or, $P Q=\sqrt{ } 119 \mathrm{~cm}$

So, option (D) $\sqrt{ } 119 \mathrm{~cm}$ is the length of $P Q$.

Question 4: Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer:

In the above figure, PQ and AB are two parallel lines. The line segment AB is the tangent at point C while the line segment $P Q$ is the secant.

Exercise 10.2

Question 1: From a point Q, the length of the tangent to a circle is $\mathbf{2 4} \mathbf{~ c m}$, and the distance of Q from the centre is 25 cm . The radius of the circle is
(A) $\mathbf{7 c m}$ (B) 12 cm (C) $\mathbf{1 5} \mathrm{cm}$ (D) 24.5 cm

Answer:

From the figure we can see that, $\mathrm{OP} \perp \mathrm{PQ}$
It is given that, $O Q=25 \mathrm{~cm}$ and $P Q=24 \mathrm{~cm}$
Hence, by using Pythagoras theorem in $\triangle O P Q$,
$\mathrm{OQ}^{2}=\mathrm{OP}^{2}+\mathrm{PQ}^{2}$
or, $(25)^{2}=\mathrm{OP}^{2}+(24)^{2}$
or, $\mathrm{OP}^{2}=625-576$
or, $\mathrm{OP}^{2}=49$
or, $\mathrm{OP}=7 \mathrm{~cm}$
So, option (A), i.e. 7 cm is the radius of the given circle.

Question 2: In the figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle P O Q=110^{\circ}$, then $\angle P T Q$ is equal to
(a) 60°
(b) 70°
(c) 80°
(d) 90°

Answer: So, from the given figure, $\mathrm{OP} \perp \mathrm{PT}$ and $\mathrm{TQ} \perp \mathrm{OQ}$
Therefore, $\angle O P T=\angle O Q T=90^{\circ}$
Now, in the quadrilateral POQT, we know that the sum of the interior angles is 360°
So, $\angle \mathrm{PTQ}+\angle \mathrm{POQ}+\angle \mathrm{OPT}+\angle \mathrm{OQT}=360^{\circ}$

Now, $\angle \mathrm{PTQ}+90^{\circ}+110^{\circ}+90^{\circ}=360^{\circ}$
or, $\angle \mathrm{PTQ}=70^{\circ}$
So, $\angle \mathrm{PTQ}$ is 70° option(B).

Question 3: If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then $\angle P O A$ is equal to
(A) 50° (B) 60° (C) 70° (D) 80°

Answer:

After making the diagram according to the problem, in the diagram, $O A$ is the radius to tangent PA and OB is the radius to tangents PB . So, $\mathrm{OA} \perp \mathrm{PA}$ and $\mathrm{OB} \perp \mathrm{PB}$ and $\angle O B P=\angle O A P=90^{\circ}$

Now, in the quadrilateral AOBP,
$\angle A O B+\angle O A P+\angle O B P+\angle A P B=360^{\circ}$
or, $\angle A O B+260^{\circ}=360^{\circ}$
or, $\angle A O B=100^{\circ}$
Now, taking the triangles $\triangle \mathrm{OPB}$ and $\triangle \mathrm{OPA}$,
$\mathrm{AP}=\mathrm{BP}$ (Since the tangents from a point are always equal)
$O A=O B$ (Which are the radii of the circle)
$\mathrm{OP}=\mathrm{OP}$ (It is the common side)
Therefore, $\triangle \mathrm{OPB} \cong \triangle \mathrm{OPA}$ [SSS congruency]
or, So, $\angle \mathrm{POB}=\angle \mathrm{POA}$
or, $\angle A O B=\angle P O A+\angle P O B$
or, $2(\angle \mathrm{POA})=\angle \mathrm{AOB}$

By putting the values, we get, $\angle \mathrm{POA}=\frac{100^{\circ}}{2}=50^{\circ}$
As angle $\angle \mathrm{POA}$ is 50° option (A) is the correct option.

Question 4: Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer:

$A B$ is the diameter and p and q are the tangents.
$O A \perp p$ and, $O B \perp q$
Therefore, $\angle 1=\angle 2=90^{\circ}$, hence, p \| q [As $\angle 1$ and $\angle 2$ are alternate angles]

Question 5: Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Answer:

In the given figure, AXB is the tangent to the circle having centre O .
Hence, OX \perp AXB
Therefore, $\angle \mathrm{OXB}+\angle \mathrm{BXY}=90^{\circ}+90^{\circ}=180^{\circ}$, which implies that OXY is collinear, i.e., OX passes through the centre of the circle. (Proved)

Question 6: The length of a tangent from a point A at a distance 5 cm from the circle's centre is 4 cm . Find the radius of the circle

Answer:

We know, $O A=5 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$
Now, In $\triangle \mathrm{ABO}$,
$\mathrm{OA}^{2}=\mathrm{AB}^{2}+\mathrm{BO}^{2} \quad$ [Using Pythagoras theorem]
or, $5^{2}=4^{2}+\mathrm{BO}^{2}$
or, $\mathrm{BO}^{2}=25-16$
or $\mathrm{BO}^{2}=9$
or, $\mathrm{BO}=3$
So, the radius of the given circle, i.e. BO is 3 cm .

Question 7: Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of the larger circle which touches, the smaller circle

Answer:

We have, $\mathrm{OP}=\mathrm{OQ}=5 \mathrm{~cm}$ [Radii of larger circle]
$\mathrm{OR}=3 \mathrm{~cm}$ [Radii of smaller circle]
$P Q$ is the tangent to the smaller circle.
Therefore, $\mathrm{OR} \perp \mathrm{PQ}$ [by theorem]
In the tringles, ORP and ORQ
$\angle \mathrm{ORP}=\angle \mathrm{ORQ}\left[90^{\circ}\right]$
$\mathrm{OR}=\mathrm{OR}$ [Common]
$\mathrm{OP}=\mathrm{OQ}$ [Radii of the same circle]
Therefore, $\triangle O P R \cong \triangle O Q R, H E N C E, P R=R Q$ [CPCT]
Using Pythagoras theorem in triangle OPR,
$P R^{2}=O P^{2}-O R^{2}$
or, $\mathrm{PR}^{2}=5^{2}-3^{2}$
or, $\mathrm{PR}^{2}=(25-9)$
or, $\mathrm{PR}=4 \mathrm{~cm}$
Therefore, $\mathrm{PQ}=2 \mathrm{PR}=2 \times 4=8 \mathrm{~cm}$

Question 8: A quadrilateral $A B C D$ is drawn to circumscribe a circle (see figure). Prove that $A B+C D=A D+B C$.

Answer: AP = AS(1)[length of tangents from the same point are equal]
$B P=B Q$.
$C R=C Q$
DR = DS
Now, adding these four equations, we get,
$A P+B P+C R+D R=A S+B Q+C Q+D S$
or, $(A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q)$
or, $A B+C D=A D+B C$ [proved]

Question 9: In the figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle, x with centre O and another tangent $A B$ with the point of contact C intersecting $X Y$ at A and $X^{\prime} Y^{\prime}$ at B. Prove that $\angle A O B=90^{\circ}$.

Answer: In \triangle OPA and $\triangle O C A$
$\mathrm{OP}=\mathrm{OC}$ [radii of the same circle]
$A O=A O$ [common side]
AP = AC [tangents from point A]
So, $\triangle \mathrm{OPA} \cong \triangle \mathrm{OCA}$ [SSS congruency]
Similarly, $\triangle \mathrm{OQB} \cong \triangle O C B$
So, $\angle \mathrm{POA}=\angle \mathrm{COA}$
and, $\angle \mathrm{QOB}=\angle \mathrm{COB}$
Since the line, POQ is the diameter of the circle.
So, $\angle \mathrm{POA}+\angle \mathrm{COA}+\angle \mathrm{COB}+\angle \mathrm{QOB}=180^{\circ}$
Now, from equations (1) and equation (2) we get,
$2 \angle C O A+2 \angle C O B=180^{\circ}$
or, $\angle C O A+\angle C O B=90^{\circ}$
or, $\angle A O B=90^{\circ}$

Question 10: Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Answer:

From the diagram, line segments $O A$ and $P A$ are perpendicular. So, $\angle O A P=90^{\circ}$
The line segments $\mathrm{OB} \perp \mathrm{PB}$ and so, $\angle \mathrm{OBP}=90^{\circ}$
Now, in the quadrilateral OAPB,
Therefore, $\angle \mathrm{APB}+\angle \mathrm{OAP}+\angle \mathrm{PBO}+\angle \mathrm{BOA}=360^{\circ}$ [As the sum of all interior angles will be 360°]
By putting the values,
$\angle A P B+180^{\circ}+\angle B O A=360^{\circ}$
So, $\angle \mathrm{APB}+\angle \mathrm{BOA}=180^{\circ}$

Question 11: Prove that the parallelogram circumscribing a circle is a rhombus.
Answer:

Answer: In $\triangle \mathrm{ORC}$ and $\triangle \mathrm{OSA}$
$\angle O R C=\angle O S A\left[0^{\circ}\right]$
$O C=O A \quad[\mathrm{O}$ is the midpoint of AC]
OR = OS [Radii of same circle]
Therefore, $\Delta \mathrm{ORC} \cong \triangle \mathrm{OSA}$ [By RHS congruency]
Hence, RC = AS
(1) [CPCT]
and, $D R=D S$
..(2) [tangents from the points]
Adding eq. (1) and (2), we get,
$R C+D R=A S+D S$
or, $D C=A D$
or, $A B=D C, A D=B C[A B C D$ is a parallelogram $]$
Hence, $A B C D$ is a rhombus.

Question 12: A triangle $A B C$ is drawn to circumscribe a circle of radius 4 cm such that the segments $B D$ and $D C$ into which $B C$ is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see figure). Find the sides $A B$ and $A C$.

Answer:
$B D=8 \mathrm{~cm}$ and $D C=6 \mathrm{~cm}$
$B E=B D=8 \mathrm{~cm}$
$C D=C F=6 \mathrm{~cm}$
Let $A E=A F=x \mathrm{~cm}$
In $\triangle A B C, \mathrm{a}=6+8=14 \mathrm{~cm}$
$\mathrm{b}=(\mathrm{x}+6) \mathrm{cm}$
c $=(\mathrm{x}+8) \mathrm{cm}$
$s=\frac{a+b+c}{2}=\frac{14+x+6+x+8}{2}=\frac{2 x+28}{2}=(x+14) \mathrm{cm}$
$\operatorname{ar}(\triangle A B C)=\sqrt{s(s-a)(s-b)(s-c)}$

$$
\begin{equation*}
=\sqrt{(x+14) \times x \times 8 \times 6}=\sqrt{48 x \times(x+14)} \mathrm{cm}^{2} \tag{i}
\end{equation*}
$$

Again, $\quad \operatorname{ar}(\triangle A B C)=\operatorname{ar}(\triangle O B C)+\operatorname{ar}(\triangle O C A)+\operatorname{ar}(\triangle O A B)$

$$
\begin{align*}
& =\frac{1}{2} \times 4 \times a+\frac{1}{2} \times 4 \times b+\frac{1}{2} \times 4 \times c \\
& =2 a+2 b+2 c=2(a+b+c)=2 \times 2(x+14) \tag{ii}
\end{align*}
$$

From (i) and (ii) we get,

$$
\sqrt{48 x(x+14)}=4(x+14)
$$

or, $\quad 48 x(x+14)=4^{2}(x+14)^{2}$
or, $\quad 48 x(x+14)=16(x+14)^{2}$
or, $\quad 3 x(x+14)=(x+14)^{2}$
or, $\quad 3 x=(x+14)$
or, $\quad 2 x=14$
or, $\quad x=7$
Therefore, $A B=x+8=7+8=15 \mathrm{~cm}$

$$
A C=x+6=7+6=13 \mathrm{~cm}
$$

Question 13: Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer: From the figure, we observe that OA bisects $\angle \mathrm{SOP}$.
So, $\angle \mathrm{a}=\angle \mathrm{b}$
$\angle \mathrm{C}=\angle \mathrm{d}$.
$\angle \mathrm{e}=\angle \mathrm{f}$.
$\angle \mathrm{g}=\angle \mathrm{h}$.
Therefore, $2(\angle \mathrm{a}+\angle \mathrm{h}+\angle \mathrm{e}+\angle \mathrm{d})=360^{\circ}$
or, $(\angle \mathrm{a}+\angle \mathrm{h})+(\angle \mathrm{e}+\angle \mathrm{d})=180^{\circ}$
or, $\angle \mathrm{AOB}+\angle \mathrm{DOC}=180^{\circ}$
And, $2(\angle \mathrm{~b}+\angle \mathrm{c}+\angle \mathrm{g}+\angle \mathrm{f})=360^{\circ}$
or, $(\angle \mathrm{b}+\angle \mathrm{c})+(\angle \mathrm{g}+\angle \mathrm{f})=180^{\circ}$
or, $\angle A O D+\angle B O C=180^{\circ}$

