<u>Chapter 10 – Circles</u> <u>Exercise – 10.1</u>

Question 1: 1. How many tangents can a circle have?

Answer: There can be infinite tangents to a circle.

Question 2: Fill in the blanks:

(i) A tangent to a circle intersects it in point(s).

(ii) A line intersecting a circle in two points is called a

(iii) A circle can have parallel tangents at the most.

(iv) The common point of a tangent to a circle and the circle is called

Answer: (i) one

(ii) secant

(iii) two

(iv) point of contact

Question 3: A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is (a) 12 cm

- (b) 13 cm
- (c) 8.5 cm
- (d) $\sqrt{119}$ c

Answer:

From the figure, we can see that, $OP \perp PQ$

Using Pythagoras theorem in triangle $\triangle OPQ$, we get,

 $OQ^2 = OP^2 + PQ^2$ or, $(12)^2 = 5^2 + PQ^2$ or, $PQ^2 = 144 - 25$ or, $PQ^2 = 119$ or, $PQ = \sqrt{119}$ cm So, option (D) $\sqrt{119}$ cm is the length of PQ.

Question 4: Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

Answer:

In the above figure, PQ and AB are two parallel lines. The line segment AB is the tangent at point C while the line segment PQ is the secant.

Exercise 10.2

Question 1: From a point Q, the length of the tangent to a circle is 24 cm, and the distance of Q from the centre is 25 cm. The radius of the circle is (A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5 cm

Answer:

From the figure we can see that, $OP \perp PQ$ It is given that, OQ = 25 cm and PQ = 24 cm Hence, by using Pythagoras theorem in $\triangle OPQ$,

 $OQ^2 = OP^2 + PQ^2$ or, $(25)^2 = OP^2 + (24)^2$ or, $OP^2 = 625 - 576$ or, $OP^2 = 49$ or, OP = 7 cm

So, option (A), i.e. 7 cm is the radius of the given circle.

Question 2: In the figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^\circ$, then $\angle PTQ$ is equal to

- (a) 60° (b) 70°
- (c) 80°
- (d) 90°

Answer: So, from the given figure, OP \perp PT and TQ \perp OQ Therefore, \angle OPT = \angle OQT = 90° Now, in the quadrilateral POQT, we know that the sum of the interior angles is 360° So, \angle PTQ+ \angle POQ+ \angle OPT+ \angle OQT = 360° Now, ∠PTQ + 90° + 110° + 90° = 360° or, ∠PTQ = 70° So, ∠PTQ is 70° option(B).

Question 3: If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then \angle POA is equal to (A) 50° (B) 60° (C) 70° (D) 80°

Answer:

After making the diagram according to the problem, in the diagram, OA is the radius to tangent PA and OB is the radius to tangents PB. So, OA \perp PA and OB \perp PB and \angle OBP = \angle OAP = 90°

Now, in the quadrilateral AOBP, $\angle AOB + \angle OAP + \angle OBP + \angle APB = 360^{\circ}$ or, $\angle AOB + 260^{\circ} = 360^{\circ}$ or, $\angle AOB = 100^{\circ}$

Now, taking the triangles $\triangle OPB$ and $\triangle OPA$,

AP = BP (Since the tangents from a point are always equal) OA = OB (Which are the radii of the circle) OP = OP (It is the common side)

Therefore, $\triangle OPB \cong \triangle OPA$ [SSS congruency] or, So, $\angle POB = \angle POA$ or, $\angle AOB = \angle POA + \angle POB$ or, $2(\angle POA) = \angle AOB$ By putting the values, we get, $\angle POA = \frac{100^{\circ}}{2} = 50^{\circ}$

As angle $\angle POA$ is 50° option(A) is the correct option.

Question 4: Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Answer:

AB is the diameter and p and q are the tangents. OA \perp p and, OB \perp q

Therefore, $\angle 1 = \angle 2 = 90^{\circ}$, hence, p || q [As $\angle 1$ and $\angle 2$ are alternate angles]

Question 5: Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Answer:

In the given figure, AXB is the tangent to the circle having centre O. Hence, OX \perp AXB

Therefore, $\angle OXB + \angle BXY = 90^\circ + 90^\circ = 180^\circ$, which implies that OXY is collinear, i.e., OX passes through the centre of the circle. (Proved)

Question 6: The length of a tangent from a point A at a distance 5 cm from the circle's centre is 4 cm. Find the radius of the circle

Answer:

We know, OA = 5cm and AB = 4 cm Now, In \triangle ABO, OA² =AB²+BO² [Using Pythagoras theorem] or, 5² = 4²+BO² or, BO² = 25-16 or BO² = 9 or, BO = 3

So, the radius of the given circle, i.e. BO is 3 cm.

Question 7: Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches, the smaller circle

Answer:

We have, OP = OQ = 5cm [Radii of larger circle] OR = 3 cm [Radii of smaller circle]

PQ is the tangent to the smaller circle. Therefore, OR \perp PQ [by theorem] In the tringles, ORP and ORQ

 $\angle ORP = \angle ORQ \ [90^{0}]$ OR = OR [Common] OP = OQ [Radii of the same circle] Therefore, $\triangle OPR \cong \triangle OQR$, HENCE, PR = RQ [CPCT]

Using Pythagoras theorem in triangle OPR, $PR^2 = OP^2 - OR^2$ or, $PR^2 = 5^2 - 3^2$ or, $PR^2 = (25 - 9)$ or, PR = 4 cm

Therefore, $PQ = 2PR = 2 \times 4 = 8cm$

Question 8: A quadrilateral ABCD is drawn to circumscribe a circle (see figure). Prove that AB + CD = AD + BC.

Answer: AP = AS(1)[length of tangents from the same point are equal] BP = BQ.....(2) CR = CQ.....(3) DR = DS.....(4) Now, adding these four equations, we get, AP + BP + CR + DR = AS + BQ + CQ + DS or, (AP + BP)+(CR + DR) = (AS + DS)+(BQ + CQ) or, AB + CD = AD + BC [proved] Question 9: In the figure, XY and X'Y' are two parallel tangents to a circle, x with centre O and another tangent AB with the point of contact C intersecting XY at A and X'Y' at B. Prove that $\angle AOB = 90^{\circ}$.

Answer: In $\triangle OPA$ and $\triangle OCA$ OP = OC [radii of the same circle] AO = AO [common side] AP = AC [tangents from point A]

So, $\triangle OPA \cong \triangle OCA$ [SSS congruency]

Similarly, $\triangle OQB \cong \triangle OCB$

So, $\angle POA = \angle COA$ (1) and, $\angle QOB = \angle COB$ (2)

Since the line, POQ is the diameter of the circle. So, \angle POA + \angle COA + \angle COB + \angle QOB = 180°

Now, from equations (1) and equation (2) we get, $2\angle COA+2\angle COB = 180^{\circ}$ or, $\angle COA+\angle COB = 90^{\circ}$ or, $\angle AOB = 90^{\circ}$

Question 10: Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Answer:

From the diagram, line segments OA and PA are perpendicular. So, $\angle OAP = 90^{\circ}$ The line segments OB \perp PB and so, $\angle OBP = 90^{\circ}$

Now, in the quadrilateral OAPB, Therefore, $\angle APB + \angle OAP + \angle PBO + \angle BOA = 360^{\circ}$ [As the sum of all interior angles will be 360°]

By putting the values, $\angle APB + 180^{\circ} + \angle BOA = 360^{\circ}$ So, $\angle APB + \angle BOA = 180^{\circ}$

Question 11: Prove that the parallelogram circumscribing a circle is a rhombus.

Answer:

Answer: In $\triangle ORC$ and $\triangle OSA$ $\angle ORC = \angle OSA$ [90⁰] OC = OA [O is the midpoint of AC] OR = OS [Radii of same circle] Therefore, $\triangle ORC \cong \triangle OSA$ [By RHS congruency] Hence, RC = AS......(1) [CPCT] and, DR = DS(2) [tangents from the points]

Adding eq. (1) and (2), we get, RC + DR = AS + DSor, DC = ADor, AB = DC, AD = BC [ABCD is a parallelogram] Hence, ABCD is a rhombus.

Question 12: A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see figure). Find the sides AB and AC.

Answer:

BD = 8cm and DC = 6cm
BE = BD = 8cm
CD = CF = 6cm
Let AE = AF = x cm
In
$$\triangle ABC$$
, a = 6+8 = 14cm
b = (x+6) cm
c = (x+8) cm
 $s = \frac{a+b+c}{2} = \frac{14+x+6+x+8}{2} = \frac{2x+28}{2} = (x + 14) cm$
ar($\triangle ABC$) = $\sqrt{s(s-a)(s-b)(s-c)}$
 $= \sqrt{(x + 14) \times x \times 8 \times 6} = \sqrt{48x \times (x + 14)} cm^{2}$... (i)
Again, ar($\triangle ABC$) = ar($\triangle OBC$) + ar($\triangle OCA$) + ar($\triangle OAB$)
 $= \frac{1}{2} \times 4 \times a + \frac{1}{2} \times 4 \times b + \frac{1}{2} \times 4 \times c$
 $= 2a + 2b + 2c = 2(a + b + c) = 2 \times 2(x + 14)$ (ii)

From (i) and (ii) we get,

 $\sqrt{48x(x + 14)} = 4(x + 14)$ or, $48x(x + 14) = 4^{2}(x + 14)^{2}$ or, $48x(x + 14) = 16(x + 14)^{2}$ or, $3x(x + 14) = (x + 14)^{2}$ or, 3x = (x + 14)or, 2x = 14or, x = 7

Therefore, AB = x + 8 = 7 + 8 = 15cm AC = x + 6 = 7 + 6 = 13cm

Question 13: Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Answer: From the figure, we observe that OA bisects \angle SOP.

So, ∠a =∠b	(1)
$\angle c = \angle d$	(2)
∠e =∠f	(3)
∠g =∠h	(4)

Therefore, $2(\angle a + \angle h + \angle e + \angle d) = 360^{\circ}$ or, $(\angle a + \angle h) + (\angle e + \angle d) = 180^{\circ}$ or, $\angle AOB + \angle DOC = 180^{\circ}$

And, $2(\angle b + \angle c + \angle g + \angle f) = 360^{\circ}$ or, $(\angle b + \angle c) + (\angle g + \angle f) = 180^{\circ}$ or, $\angle AOD + \angle BOC = 180^{\circ}$